Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1971, Volume 15, Issue 3, Pages 405–414
DOI: https://doi.org/10.1070/SM1971v015n03ABEH001553
(Mi sm3300)
 

This article is cited in 2 scientific papers (total in 2 papers)

An estimate from below for the spatial diameter of a surface in terms of its intrinsic radius and curvature

Yu. D. Burago
References:
Abstract: In this paper we prove the following
Theorem. Let $F$ be a regular simply connected surface of class $C^3$ in $R^3$. There exist postitive absolute constants $C$ and $C_1$ such that if
$$ \mu=\int_F|K|\,dS<C, $$
where $K$ is the Gaussian curvature and $S$ is the area element on $F$, the estimate
$$ d\geqslant\bigl(\sqrt3-C_1\sqrt\mu\bigr)r $$
holds.

Bibliography: 11 titles.
Received: 11.11.1970
Bibliographic databases:
UDC: 513.7
MSC: Primary 53A05; Secondary 49F10
Language: English
Original paper language: Russian
Citation: Yu. D. Burago, “An estimate from below for the spatial diameter of a surface in terms of its intrinsic radius and curvature”, Math. USSR-Sb., 15:3 (1971), 405–414
Citation in format AMSBIB
\Bibitem{Bur71}
\by Yu.~D.~Burago
\paper An estimate from below for the spatial diameter of a~surface in terms of its intrinsic radius and curvature
\jour Math. USSR-Sb.
\yr 1971
\vol 15
\issue 3
\pages 405--414
\mathnet{http://mi.mathnet.ru//eng/sm3300}
\crossref{https://doi.org/10.1070/SM1971v015n03ABEH001553}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=293505}
\zmath{https://zbmath.org/?q=an:0225.52005}
Linking options:
  • https://www.mathnet.ru/eng/sm3300
  • https://doi.org/10.1070/SM1971v015n03ABEH001553
  • https://www.mathnet.ru/eng/sm/v128/i3/p409
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024