Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1971, Volume 15, Issue 3, Pages 335–360
DOI: https://doi.org/10.1070/SM1971v015n03ABEH001550
(Mi sm3305)
 

This article is cited in 1 scientific paper (total in 1 paper)

Bounded cohomology for coherent analytic sheaves over complex spaces

I. F. Donin
References:
Abstract: In this paper a certain continuous family $V_t=\{V_{ti}\}$, $0\leqslant t\leqslant1$, of finite covers by holomorphically complete domains is constructed for a compact complex space $X$ such that if $t_1<t_2$ then $V_{t_1i}\Subset V_{t_2i}$ and $\overline V_{ti}=\bigcap_{t'>t}V_{t'i}V_{ti}=\bigcup_{t'<t}V_{t'i}$ for all $i$ and $t$. It is proved that for each coherent sheaf $F$ over $X$ there exist positive constants $K$ and $\alpha$ such that for any $t_1,t_2$ with $t_1<t_2$, if $c\in C^p(V_{t_2},F)$ is a coboundary then one can find a cochain $c'\in C^{p-1}(V_{t_2},F)$ such that $\delta c'=c$ and
$$ \|c'\|_{t_1}<K\frac1{(t_2-t_1)^\alpha}\|c\|_{t_2}. $$

Bibliography: 4 titles.
Received: 30.10.1970
Bibliographic databases:
UDC: 513.836
MSC: Primary 32C35; Secondary 32L10
Language: English
Original paper language: Russian
Citation: I. F. Donin, “Bounded cohomology for coherent analytic sheaves over complex spaces”, Math. USSR-Sb., 15:3 (1971), 335–360
Citation in format AMSBIB
\Bibitem{Don71}
\by I.~F.~Donin
\paper Bounded cohomology for coherent analytic sheaves over complex spaces
\jour Math. USSR-Sb.
\yr 1971
\vol 15
\issue 3
\pages 335--360
\mathnet{http://mi.mathnet.ru//eng/sm3305}
\crossref{https://doi.org/10.1070/SM1971v015n03ABEH001550}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=299829}
\zmath{https://zbmath.org/?q=an:0224.32010}
Linking options:
  • https://www.mathnet.ru/eng/sm3305
  • https://doi.org/10.1070/SM1971v015n03ABEH001550
  • https://www.mathnet.ru/eng/sm/v128/i3/p339
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024