|
This article is cited in 1 scientific paper (total in 1 paper)
Bounded cohomology for coherent analytic sheaves over complex spaces
I. F. Donin
Abstract:
In this paper a certain continuous family $V_t=\{V_{ti}\}$, $0\leqslant t\leqslant1$,
of finite covers by holomorphically complete domains is constructed for a compact complex space $X$ such that if $t_1<t_2$ then $V_{t_1i}\Subset V_{t_2i}$ and $\overline V_{ti}=\bigcap_{t'>t}V_{t'i}V_{ti}=\bigcup_{t'<t}V_{t'i}$ for all $i$ and $t$. It is proved that for each coherent sheaf $F$ over $X$ there exist positive constants $K$ and $\alpha$
such that for any $t_1,t_2$ with $t_1<t_2$, if $c\in C^p(V_{t_2},F)$ is a coboundary then one can find a cochain $c'\in C^{p-1}(V_{t_2},F)$ such that $\delta c'=c$ and
$$
\|c'\|_{t_1}<K\frac1{(t_2-t_1)^\alpha}\|c\|_{t_2}.
$$
Bibliography: 4 titles.
Received: 30.10.1970
Citation:
I. F. Donin, “Bounded cohomology for coherent analytic sheaves over complex spaces”, Mat. Sb. (N.S.), 86(128):3(11) (1971), 339–366; Math. USSR-Sb., 15:3 (1971), 335–360
Linking options:
https://www.mathnet.ru/eng/sm3305https://doi.org/10.1070/SM1971v015n03ABEH001550 https://www.mathnet.ru/eng/sm/v128/i3/p339
|
Statistics & downloads: |
Abstract page: | 207 | Russian version PDF: | 75 | English version PDF: | 9 | References: | 47 |
|