Abstract:
This paper is devoted to the investigation of the spectrum of a polyharmonic operator in unbounded domains. The class of domains for which the spectrum of the corresponding first boundary value problem is discrete is examined. The classical asymptotic formula for eigenvalues is extended to the case of domains of finite volume. A two-sided bound for the distribution function of the eigenvalues is obtained in the general case. If the domain behaves sufficiently regularly at infinity, then the upper and lower bounds coincide in order. The results are new also for the Laplace operator.
Bibliography: 13 titles.
\Bibitem{Roz72}
\by G.~V.~Rozenblum
\paper On~the eigenvalues of the first boundary value problem in unbounded domains
\jour Math. USSR-Sb.
\yr 1972
\vol 18
\issue 2
\pages 235--248
\mathnet{http://mi.mathnet.ru/eng/sm3229}
\crossref{https://doi.org/10.1070/SM1972v018n02ABEH001766}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=348295}
\zmath{https://zbmath.org/?q=an:0267.35063}
Linking options:
https://www.mathnet.ru/eng/sm3229
https://doi.org/10.1070/SM1972v018n02ABEH001766
https://www.mathnet.ru/eng/sm/v131/i2/p234
This publication is cited in the following 20 articles:
Charlotte Dietze, “Weyl's law for Neumann Schrödinger operators on Hölder domains”, Séminaire Laurent Schwartz — EDP et applications, 2023, 1
Rupert L. Frank, Operator Theory: Advances and Applications, 291, From Complex Analysis to Operator Theory: A Panorama, 2023, 549
R. L. Frank, S. Larson, “Two consequences of Davies's Hardy inequality”, Funct. Anal. Appl., 55:2 (2021), 174–177
Davide Buoso, Paolo Luzzini, Luigi Provenzano, Joachim Stubbe, “On the spectral asymptotics for the buckling problem”, Journal of Mathematical Physics, 62:12 (2021)
Rupert L. Frank, Simon Larson, “On the error in the two-term Weyl formula for the Dirichlet Laplacian”, Journal of Mathematical Physics, 61:4 (2020)
St. Petersburg Math. J., 30:3 (2019), 573–589
Mark S. Ashbaugh, Fritz Gesztesy, Ari Laptev, Marius Mitrea, Selim Sukhtaiev, “A bound for the eigenvalue counting function for Krein–von Neumann and Friedrichs extensions”, Advances in Mathematics, 304 (2017), 1108
S. I. Boyarchenko, S. Z. Levendorskiǐ, “Spectral asymptotics with a remainder estimate of the Neumann Laplacian on horns: the case of the rapidly growing counting function”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 128:01 (2011), 11
LEANDER GEISINGER, TIMO WEIDL, “SHARP SPECTRAL ESTIMATES IN DOMAINS OF INFINITE VOLUME”, Rev. Math. Phys, 23:06 (2011), 615
S. I. Boyarchenko, S. Z. Levendorskii, “Spectral Asymptotics of Laplacians on Horns: the Case of a Rapidly Growing Counting Function”, Funct. Anal. Appl., 32:3 (1998), 198–200
L. B. Parnovski, “Asymptotics of Dirichlet Spectrum on Some Class of Noncompact Domains”, Math Nachr, 174:1 (1995), 253
M van den Berg, “Dirichlet-Neumann bracketing for horn-shaped regions”, Journal of Functional Analysis, 104:1 (1992), 110
V Jakšić, S Molčanov, B Simon, “Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps”, Journal of Functional Analysis, 106:1 (1992), 59
M. van den Berg, E. B. Davies, “Heat flow out of regions in ℝ m”, Math Z, 202:4 (1989), 463
S. Z. Levendorskii, “Non-classical spectral asymptotics”, Russian Math. Surveys, 43:1 (1988), 149–192
M van den Berg, “On the asymptotics of the heat equation and bounds on traces associated with the Dirichlet Laplacian”, Journal of Functional Analysis, 71:2 (1987), 279
M Robnik, J Phys A Math Gen, 19:18 (1986), 3845
S. Z. Levendorskii, “Asymptotics of the spectra of degenerate elliptic systems in unbounded regions”, Funct. Anal. Appl., 19:2 (1985), 148–150
M van den Berg, “On the spectrum of the Dirichlet Laplacian for horn-shaped regions in Rn with infinite volume”, Journal of Functional Analysis, 58:2 (1984), 150
A. B. Khmelnitskaya, “Ob asimptotike spektra gipoellipticheskikh
operatorov s postoyannymi koeffitsientami v proizvolnykh oblastyakh
konechnoi mery”, UMN, 31:4(190) (1976), 279–280