|
Invariant subrings of the induced ring on the $4\times4$ symplectic group
B. Kh. Kirshtein
Abstract:
It is proved that if $\Omega$ is an invariant subring of the induced ring $\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(K)$ with ring of values $A$ and maximal induced subring $\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(K)$, then
$$
0\to\Omega/\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(I)\to\operatorname{Ind}_{GL_2}^{\varphi,B}(A/I) \quad\text{and}\quad 0\to A/I\to\operatorname{Ind}_{GL_2}^{\varphi,B}(A/\mathscr F),
$$
and the ideals $~I$ and $\mathscr F$ of $A$ are described.
Bibliography: 2 titles.
Received: 18.06.1971
Citation:
B. Kh. Kirshtein, “Invariant subrings of the induced ring on the $4\times4$ symplectic group”, Math. USSR-Sb., 18:2 (1972), 228–234
Linking options:
https://www.mathnet.ru/eng/sm3228https://doi.org/10.1070/SM1972v018n02ABEH001764 https://www.mathnet.ru/eng/sm/v131/i2/p227
|
Statistics & downloads: |
Abstract page: | 210 | Russian version PDF: | 68 | English version PDF: | 3 | References: | 41 |
|