Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1972, Volume 18, Issue 2, Pages 228–234
DOI: https://doi.org/10.1070/SM1972v018n02ABEH001764
(Mi sm3228)
 

Invariant subrings of the induced ring on the $4\times4$ symplectic group

B. Kh. Kirshtein
References:
Abstract: It is proved that if $\Omega$ is an invariant subring of the induced ring $\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(K)$ with ring of values $A$ and maximal induced subring $\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(K)$, then
$$ 0\to\Omega/\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(I)\to\operatorname{Ind}_{GL_2}^{\varphi,B}(A/I) \quad\text{and}\quad 0\to A/I\to\operatorname{Ind}_{GL_2}^{\varphi,B}(A/\mathscr F), $$
and the ideals $~I$ and $\mathscr F$ of $A$ are described.
Bibliography: 2 titles.
Received: 18.06.1971
Bibliographic databases:
UDC: 519.46
MSC: 20G25, 20G05
Language: English
Original paper language: Russian
Citation: B. Kh. Kirshtein, “Invariant subrings of the induced ring on the $4\times4$ symplectic group”, Math. USSR-Sb., 18:2 (1972), 228–234
Citation in format AMSBIB
\Bibitem{Kir72}
\by B.~Kh.~Kirshtein
\paper Invariant subrings of the induced ring on the $4\times4$ symplectic group
\jour Math. USSR-Sb.
\yr 1972
\vol 18
\issue 2
\pages 228--234
\mathnet{http://mi.mathnet.ru//eng/sm3228}
\crossref{https://doi.org/10.1070/SM1972v018n02ABEH001764}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=338203}
\zmath{https://zbmath.org/?q=an:0281.20039}
Linking options:
  • https://www.mathnet.ru/eng/sm3228
  • https://doi.org/10.1070/SM1972v018n02ABEH001764
  • https://www.mathnet.ru/eng/sm/v131/i2/p227
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:210
    Russian version PDF:68
    English version PDF:3
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024