Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1979, Volume 35, Issue 5, Pages 631–680
DOI: https://doi.org/10.1070/SM1979v035n05ABEH001615
(Mi sm2679)
 

This article is cited in 69 scientific papers (total in 70 papers)

Absolute continuity and singularity of locally absolutely continuous probability distributions. I

Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev
References:
Abstract: Let $(\Omega,\mathscr F)$ be a measurable space provided with a nondecreasing family of $\sigma$-algebras ($\mathscr F_t)_{t\geqslant0}$ with $\mathscr F=\bigvee_{t\geqslant0}\mathscr F_t$ and $\widetilde{\mathsf P}$ and $\mathsf P$ two locally absolutely continuous probability measures on $(\Omega,\mathscr F)$, i.e., such that $\widetilde{\mathsf P}_t\ll\mathsf P_t$ for $t\geqslant0$ ($\widetilde{\mathsf P}_t$ and $\mathsf P_t$ are the restrictions of $\widetilde{\mathsf P}$ and $\mathsf P$ to $\mathscr F_t$). One asks when $\widetilde{\mathsf P}\ll \mathsf P$ or $\widetilde{\mathsf P}\perp\mathsf P$. An answer to this question is given in terms of the convergence set of a certain increasing predictable process constructed for the martingale $\mathfrak Z=(\mathfrak Z_t,\mathscr F_t,\mathsf P)$ with $\mathfrak Z_t=d\widetilde{\mathsf P}_t/d\mathsf P_t$. Actually, the somewhat more general situation of $\theta$-local absolute continuity of measures is studied. The proof of the fundamental theorem is based on a series of results that are of independent interest.
In § 2 the theory of integration with respect to random measures is developed. § 4 deals with the convergence sets of semimartingales, and § 5 with the transformation of the predictable characteristics of a semimartingale under a locally absolutely continuous change of measure. Sufficient conditions are given in § 7 for the uniform integrability of nonnegative local martingales.
Bibliography: 24 titles.
Received: 11.01.1978
Bibliographic databases:
Document Type: Article
UDC: 519.2
MSC: Primary 60G30, 60G45, 60H05; Secondary 28A40, 60G25, 60G40
Language: English
Original paper language: Russian
Citation: Yu. M. Kabanov, R. Sh. Liptser, A. N. Shiryaev, “Absolute continuity and singularity of locally absolutely continuous probability distributions. I”, Math. USSR-Sb., 35:5 (1979), 631–680
Citation in format AMSBIB
\Bibitem{KabLipShi78}
\by Yu.~M.~Kabanov, R.~Sh.~Liptser, A.~N.~Shiryaev
\paper Absolute continuity and singularity of locally absolutely continuous probability distributions.~I
\jour Math. USSR-Sb.
\yr 1979
\vol 35
\issue 5
\pages 631--680
\mathnet{http://mi.mathnet.ru//eng/sm2679}
\crossref{https://doi.org/10.1070/SM1979v035n05ABEH001615}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=515738}
\zmath{https://zbmath.org/?q=an:0426.60039|0402.60039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JG48000003}
Linking options:
  • https://www.mathnet.ru/eng/sm2679
  • https://doi.org/10.1070/SM1979v035n05ABEH001615
  • https://www.mathnet.ru/eng/sm/v149/i3/p364
    Cycle of papers
    This publication is cited in the following 70 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024