Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 36, Issue 3, Pages 283–299
DOI: https://doi.org/10.1070/SM1980v036n03ABEH001813
(Mi sm2302)
 

This article is cited in 3 scientific papers (total in 3 papers)

On deformations of closed surfaces of genus p1 with given infinitesimal change of metric

S. B. Klimentov
References:
Abstract: In this article the author studies deformations with given infinitesimal change of metric of a closed surface of genus p1 of positive extrinsic curvature, situated in a three-dimensional Riemannian space. It is established that, in contrast to the case p=0 (investigated by H. Weyl and A. V. Pogorelov), the surface does not admit deformations with an arbitrary preassigned infinitesimal change of metric. Conditions are obtained on the given change of metric that are necessary and sufficient for the existence of a deformation. As an auxiliary result necessary and sufficient conditions are established for the existence on a closed Riemann surface of a regular global solution of a nonhomogeneous elliptic system of Carleman type.
Bibliography: 13 titles.
Received: 24.03.1978
Bibliographic databases:
UDC: 513.81
MSC: Primary 35C45, 35J45; Secondary 53C20
Language: English
Original paper language: Russian
Citation: S. B. Klimentov, “On deformations of closed surfaces of genus p1 with given infinitesimal change of metric”, Math. USSR-Sb., 36:3 (1980), 283–299
Citation in format AMSBIB
\Bibitem{Kli79}
\by S.~B.~Klimentov
\paper On deformations of closed surfaces of genus $p\geqslant1$ with given infinitesimal change of metric
\jour Math. USSR-Sb.
\yr 1980
\vol 36
\issue 3
\pages 283--299
\mathnet{http://mi.mathnet.ru/eng/sm2302}
\crossref{https://doi.org/10.1070/SM1980v036n03ABEH001813}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=530313}
\zmath{https://zbmath.org/?q=an:0439.53053|0423.53037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM96900001}
Linking options:
  • https://www.mathnet.ru/eng/sm2302
  • https://doi.org/10.1070/SM1980v036n03ABEH001813
  • https://www.mathnet.ru/eng/sm/v150/i3/p307
  • This publication is cited in the following 3 articles:
    1. S. B. Klimentov, “Ob izgibaniyakh poverkhnostei roda p1 polozhitelnoi vneshnei krivizny”, Materialy mezhdunarodnoi konferentsii “Geometricheskie metody v teorii upravleniya i matematicheskoi fizike”, posvyaschennoi 70-letiyu S.L. Atanasyana, 70-letiyu I.S. Krasilschika, 70-letiyu A.V. Samokhina, 80-letiyu V.T. Fomenko. Ryazanskii gosudarstvennyi universitet im. S.A. Esenina, Ryazan, 25–28 sentyabrya 2018 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 169, VINITI RAN, M., 2019, 17–22  mathnet  crossref  elib
    2. Bikchantaev I., “Boundary-Value-Problems for 1st-Order Elliptic-Systems on Riemann Surfaces”, Differ. Equ., 22:10 (1986), 1183–1188  mathscinet  zmath  isi
    3. Bikchantaev I., “Integral-Representations of Solutions of 1st-Order Elliptic-Systems on Riemann Surfaces”, Differ. Equ., 22:9 (1986), 1085–1091  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:420
    Russian version PDF:112
    English version PDF:26
    References:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025