Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1980, Volume 36, Issue 3, Pages 301–322
DOI: https://doi.org/10.1070/SM1980v036n03ABEH001814
(Mi sm2307)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the essential continuity of summable functions

V. I. Kolyada
References:
Abstract: This paper studies the relation between the integral smoothness of a function and its essential continuity, and also the convergence of Steklov means and Fourier series.
Let $1<p<\infty$, and let the modulus of continuity $\omega(\delta)$ be such that the series $\sum_{n=1}^\infty n^{1/p-1}\omega(1/n)$ ($1<p<\infty$) diverges. Then in the class $H_p^{\omega}$ there is a bounded function $f$ with the following properties: 1) $f$ cannot be altered on a set of measure zero so as to obtain a function continuous at even one point. 2) If $\{h_k\}$ is an arbitrary positive sequence with $h_k\to 0$, then there is a set $E$ of second category such that the sequence $(2h_k)^{-1}\int_{x-h_k}^{x+h_k}f(t)\,dt$ diverges at each point $x\in E$. 3) The partial sums $S_n(f;x)$ of the Fourier series of $f$ are uniformly bounded. 4) For any sequence $\{n_k\}$, $n_k\to\infty$, there is a set $E$ of second category such that $S_{n_k}(f;x)$ diverges for each $x\in E$.
Bibliography: 16 titles.
Received: 30.05.1978
Bibliographic databases:
UDC: 517.5
MSC: Primary 26A15; Secondary 42A20
Language: English
Original paper language: Russian
Citation: V. I. Kolyada, “On the essential continuity of summable functions”, Math. USSR-Sb., 36:3 (1980), 301–322
Citation in format AMSBIB
\Bibitem{Kol79}
\by V.~I.~Kolyada
\paper On~the essential continuity of summable functions
\jour Math. USSR-Sb.
\yr 1980
\vol 36
\issue 3
\pages 301--322
\mathnet{http://mi.mathnet.ru//eng/sm2307}
\crossref{https://doi.org/10.1070/SM1980v036n03ABEH001814}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=530314}
\zmath{https://zbmath.org/?q=an:0472.26002|0409.26002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KM96900002}
Linking options:
  • https://www.mathnet.ru/eng/sm2307
  • https://doi.org/10.1070/SM1980v036n03ABEH001814
  • https://www.mathnet.ru/eng/sm/v150/i3/p326
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025