Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 2, Pages 437–444
DOI: https://doi.org/10.1070/SM1984v048n02ABEH002684
(Mi sm2140)
 

This article is cited in 22 scientific papers (total in 22 papers)

An example of a chain prime ring with nilpotent elements

N. I. Dubrovin
References:
Abstract: In this paper the author constructs a chain ring RR (i.e. a ring in which the right and left ideals are linearly ordered by inclusion) with the following properties: 1) RR is a prime ring; 2) the Jacobson radical J(R)J(R) of RR is a simple chain ring (without identity); 3) each element of J(R)J(R) is a right and left zero divisor. This example gives an answer to one of Brung's questions. In addition, the ring J(R)J(R) is totally singular, i.e. it coincides with its right (left) singular ideal.
The construction is based on a theorem that permits one to assign a chain ring to a right ordered group whose group ring can be imbedded in a division ring.
Bibliography: 9 titles.
Received: 26.10.1981
Bibliographic databases:
UDC: 519.48
MSC: Primary 16A12, 16A22; Secondary 16A27, 06F15
Language: English
Original paper language: Russian
Citation: N. I. Dubrovin, “An example of a chain prime ring with nilpotent elements”, Math. USSR-Sb., 48:2 (1984), 437–444
Citation in format AMSBIB
\Bibitem{Dub83}
\by N.~I.~Dubrovin
\paper An example of a~chain prime ring with nilpotent elements
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 2
\pages 437--444
\mathnet{http://mi.mathnet.ru/eng/sm2140}
\crossref{https://doi.org/10.1070/SM1984v048n02ABEH002684}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=691988}
\zmath{https://zbmath.org/?q=an:0543.16003|0517.16002}
Linking options:
  • https://www.mathnet.ru/eng/sm2140
  • https://doi.org/10.1070/SM1984v048n02ABEH002684
  • https://www.mathnet.ru/eng/sm/v162/i3/p441
  • This publication is cited in the following 22 articles:
    1. Facchini A., Parolin C., “Rings Whose Proper Factors Are Right Perfect”, Colloq. Math., 122:2 (2011), 191–202  crossref  mathscinet  zmath  isi  elib
    2. Chebotar M., Lee P.-H., Puczylowski E.R., “On Commutators and Nilpotent Elements in Simple Rings”, Bull. London Math. Soc., 42:Part 2 (2010), 191–194  crossref  mathscinet  zmath  isi
    3. H.H. Brungs, H. Marubayashi, E. Osmanagic, “Gauss extensions and total graded subrings for crossed product algebras”, Journal of Algebra, 316:1 (2007), 189  crossref  mathscinet  zmath
    4. Miguel Ferrero, Ryszard Mazurek, Alveri Sant'Ana, “On right chain semigroups”, Journal of Algebra, 292:2 (2005), 574  crossref  mathscinet  zmath
    5. Lee T., “Generalized Skew Derivations Characterized by Acting on Zero Products”, Pac. J. Math., 216:2 (2004), 293–301  crossref  mathscinet  zmath  isi
    6. Brungs, HH, “A classification and examples of rank one chain domains”, Transactions of the American Mathematical Society, 355:7 (2003), 2733  crossref  mathscinet  zmath  isi  elib
    7. T. V. Dubrovina, N. I. Dubrovin, “On braid groups”, Sb. Math., 192:5 (2001), 693–703  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. N. I. Dubrovin, “Formal sums and power series over a group”, Sb. Math., 191:7 (2000), 955–971  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. Hans-Heinrich Brungs, Günter Törner, “ASSOCIATIONS AND VALUATIONS”, Quaestiones Mathematicae, 22:3 (1999), 353  crossref  mathscinet  zmath
    10. Brungs, HH, “Ideal theory of right cones and associated rings”, Journal of Algebra, 210:1 (1998), 145  crossref  mathscinet  zmath  isi
    11. T. V. Dubrovina, N. I. Dubrovin, “Cones in groups”, Sb. Math., 187:7 (1996), 1005–1019  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. H. H. Brungs, M. Schröder, “Prime Segments of Skew Fields”, Can. j. math., 47:6 (1995), 1148  crossref
    13. N. I. Dubrovin, “Rational closures of group rings of left-ordered groups”, Russian Acad. Sci. Sb. Math., 79:2 (1994), 231–263  mathnet  crossref  mathscinet  zmath  isi
    14. Ferrero M., Torner G., “Rings with Annihilator Chain-Conditions and Right Distributive Rings”, Proc. Amer. Math. Soc., 119:2 (1993), 401–405  crossref  mathscinet  zmath  isi
    15. Ferrero M., Torner G., “On the Ideal Structure of Right Distributive Rings”, Commun. Algebr., 21:8 (1993), 2697–2713  crossref  mathscinet  zmath  isi
    16. Masaru Ogura, SAE Technical Paper Series, 1, SAE Technical Paper Series, 1991  crossref
    17. Brungs H., Torner G., “Maximal Immediate Extensions Are Not Necessarily Maximally Complete”, J. Aust. Math. Soc. A-Pure Math. Stat., 49:Part 2 (1990), 196–211  crossref  mathscinet  zmath  isi
    18. Martin Schröder, “Über N. I. Dubrovin's Ansatz zur Konstruktion von nicht vollprimen Primidealen in Kettenringen”, Results. Math, 17:3-4 (1990), 296  crossref  mathscinet  zmath
    19. Charles Lanski, “Invariant additive subgroups in prime rings”, Journal of Algebra, 127:1 (1989), 1  crossref  mathscinet  zmath
    20. Mazurek R., “Remarks on Zero-Divisiors in Chain Rings”, Arch. Math., 52:5 (1989), 428–432  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:488
    Russian version PDF:122
    English version PDF:39
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025