Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 2, Pages 423–436
DOI: https://doi.org/10.1070/SM1984v048n02ABEH002683
(Mi sm2139)
 

This article is cited in 3 scientific papers (total in 3 papers)

The multidimensional problem of the correctness of Schur's theorem

I. V. Gribkov
References:
Abstract: This paper continues an earlier one (Mat. Sb. (N.S.), 116(158) (1981), 527–538). A function $\varepsilon(x)$ measuring the extent to which a Riemannian space is nonisotropic at the point $x$ is studied. Using $\varepsilon(x)$, definitions of the notion of correctness of Schur's theorem are given in the multidimensional case. The relations between these definitions are clarified, and sufficient conditions for the correctness of Schur's theorem are given. It is shown that by a small deformation of the given metric it is possible to obtain one in which Schur's theorem is not correct. The methods developed in the paper are applied to study some geometric properties of geodesically parallel surfaces.
Figures: 1.
Bibliography: 11 titles.
Received: 30.06.1982
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1983, Volume 120(162), Number 3, Pages 426–440
Bibliographic databases:
UDC: 513.014
MSC: 53C21
Language: English
Original paper language: Russian
Citation: I. V. Gribkov, “The multidimensional problem of the correctness of Schur's theorem”, Mat. Sb. (N.S.), 120(162):3 (1983), 426–440; Math. USSR-Sb., 48:2 (1984), 423–436
Citation in format AMSBIB
\Bibitem{Gri83}
\by I.~V.~Gribkov
\paper The multidimensional problem of the correctness of Schur's theorem
\jour Mat. Sb. (N.S.)
\yr 1983
\vol 120(162)
\issue 3
\pages 426--440
\mathnet{http://mi.mathnet.ru/sm2139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=691987}
\zmath{https://zbmath.org/?q=an:0547.53025|0522.53040}
\transl
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 2
\pages 423--436
\crossref{https://doi.org/10.1070/SM1984v048n02ABEH002683}
Linking options:
  • https://www.mathnet.ru/eng/sm2139
  • https://doi.org/10.1070/SM1984v048n02ABEH002683
  • https://www.mathnet.ru/eng/sm/v162/i3/p426
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:366
    Russian version PDF:106
    English version PDF:12
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024