Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 2, Pages 391–421
DOI: https://doi.org/10.1070/SM1984v048n02ABEH002682
(Mi sm2138)
 

This article is cited in 91 scientific papers (total in 92 papers)

Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation

S. N. Kruzhkov, A. V. Faminskii
References:
Abstract: In this paper the Cauchy problem for the Korteweg–de Vries equation $u_t+u_{xxx}=uu_x$, $x\in\mathbf R^1$, $0<t<T$, with initial condition $u(0,x)=u_0(x)$ is considered in nonlocal formulation. In the case of an arbitrary initial function $u_0(x)\in L^2(\mathbf R^1)$ the existence of a generalized $L^2$-solution is proved, and its smoothness is studied for $t>0$. A class of well-posed solutions is distinguished among the generalized solutions under consideration, and within this class theorems concerning existence, uniqueness and continuous dependence of solutions on initial conditions are proved.
Bibliography: 28 titles.
Received: 27.05.1982
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1983, Volume 120(162), Number 3, Pages 396–425
Bibliographic databases:
UDC: 517.946
MSC: 35Q20, 35D05
Language: English
Original paper language: Russian
Citation: S. N. Kruzhkov, A. V. Faminskii, “Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation”, Mat. Sb. (N.S.), 120(162):3 (1983), 396–425; Math. USSR-Sb., 48:2 (1984), 391–421
Citation in format AMSBIB
\Bibitem{KruFam83}
\by S.~N.~Kruzhkov, A.~V.~Faminskii
\paper Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation
\jour Mat. Sb. (N.S.)
\yr 1983
\vol 120(162)
\issue 3
\pages 396--425
\mathnet{http://mi.mathnet.ru/sm2138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=691986}
\zmath{https://zbmath.org/?q=an:0549.35104|0537.35068}
\transl
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 2
\pages 391--421
\crossref{https://doi.org/10.1070/SM1984v048n02ABEH002682}
Linking options:
  • https://www.mathnet.ru/eng/sm2138
  • https://doi.org/10.1070/SM1984v048n02ABEH002682
  • https://www.mathnet.ru/eng/sm/v162/i3/p396
  • This publication is cited in the following 92 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1747
    Russian version PDF:506
    English version PDF:54
    References:142
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024