Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 48, Issue 2, Pages 391–421
DOI: https://doi.org/10.1070/SM1984v048n02ABEH002682
(Mi sm2138)
 

This article is cited in 91 scientific papers (total in 92 papers)

Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation

S. N. Kruzhkov, A. V. Faminskii
References:
Abstract: In this paper the Cauchy problem for the Korteweg–de Vries equation ut+uxxx=uux, xR1, 0<t<T, with initial condition u(0,x)=u0(x) is considered in nonlocal formulation. In the case of an arbitrary initial function u0(x)L2(R1) the existence of a generalized L2-solution is proved, and its smoothness is studied for t>0. A class of well-posed solutions is distinguished among the generalized solutions under consideration, and within this class theorems concerning existence, uniqueness and continuous dependence of solutions on initial conditions are proved.
Bibliography: 28 titles.
Received: 27.05.1982
Bibliographic databases:
UDC: 517.946
MSC: 35Q20, 35D05
Language: English
Original paper language: Russian
Citation: S. N. Kruzhkov, A. V. Faminskii, “Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation”, Math. USSR-Sb., 48:2 (1984), 391–421
Citation in format AMSBIB
\Bibitem{KruFam83}
\by S.~N.~Kruzhkov, A.~V.~Faminskii
\paper Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 2
\pages 391--421
\mathnet{http://mi.mathnet.ru/eng/sm2138}
\crossref{https://doi.org/10.1070/SM1984v048n02ABEH002682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=691986}
\zmath{https://zbmath.org/?q=an:0549.35104|0537.35068}
Linking options:
  • https://www.mathnet.ru/eng/sm2138
  • https://doi.org/10.1070/SM1984v048n02ABEH002682
  • https://www.mathnet.ru/eng/sm/v162/i3/p396
  • This publication is cited in the following 92 articles:
    1. Nakao Hayashi, Jesus A. Mendez-Navarro, Pavel I. Naumkin, “Large time asymptotics for the modified Korteweg–de Vries-Benjamin–Ono equation”, Nonlinear Analysis, 247 (2024), 113604  crossref
    2. Émile Deléage, Felipe Linares, “Well-posedness for the initial value problem associated to the Zakharov–Kuznetsov (ZK) equation in asymmetric spaces”, Partial Differ. Equ. Appl., 4:2 (2023)  crossref
    3. Julie L. Levandosky, Octavio Vera, “Smoothing properties for a coupled Zakharov-Kuznetsov system”, ejde, 2023:01-08 (2023), 11  crossref
    4. Nakao Hayashi, Jesus A. Mendez-Navarro, Pavel I. Naumkin, “Modified scattering for the higher-order nonlinear Schrödinger equation with the Hartree-type nonlinearity”, J. Evol. Equ., 23:1 (2023)  crossref
    5. Julie Levandosky, “Propagation of regularity for solutions to the KP-I equation”, Nonlinear Analysis, 234 (2023), 113315  crossref
    6. Alexander Sukhinov, Alexander Chistyakov, Elena Timofeeva, Alla Nikitina, Yulia Belova, “The Construction and Research of the Modified “Upwind Leapfrog” Difference Scheme with Improved Dispersion Properties for the Korteweg–de Vries Equation”, Mathematics, 10:16 (2022), 2922  crossref
    7. Nakao Hayashi, Pavel I. Naumkin, “Modified scattering for the nonlinear nonlocal Schrödinger equation in one-dimensional case”, Z. Angew. Math. Phys., 73:1 (2022)  crossref
    8. Julie L. Levandosky, “Smoothing properties for a two-dimensional Kawahara equation”, Journal of Differential Equations, 316 (2022), 158  crossref
    9. Nakao Hayashi, Pavel I. Naumkin, “Modified scattering for higher-order nonlinear Schrödinger equation in one space dimension”, J. Evol. Equ., 21:4 (2021), 4469  crossref
    10. Beatriz Juarez-Campos, Pavel I. Naumkin, “Large time asymptotics for the higher-order nonlinear nonlocal Schrödinger equation”, Nonlinear Analysis, 205 (2021), 112238  crossref
    11. Nakao Hayashi, Pavel I. Naumkin, “Modified scattering for the higher-order anisotropic nonlinear Schrödinger equation in two space dimensions”, Journal of Mathematical Physics, 62:7 (2021)  crossref
    12. Pavel I. Naumkin, Isahi Sanchez-Suarez, “KdV type asymptotics for solutions to higher-order nonlinear Schrodinger equations”, ejde, 2020:01-132 (2020), 77  crossref
    13. A. V. Faminskii, “O vnutrennei regulyarnosti reshenii dvumernogo uravneniya Zakharova–Kuznetsova”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 65, no. 3, Rossiiskii universitet druzhby narodov, M., 2019, 513–546  mathnet  crossref
    14. F. Linares, G. Ponce, G.N. Santos, “On a class of solutions to the generalized derivative Schrödinger equations II”, Journal of Differential Equations, 267:1 (2019), 97  crossref
    15. Felipe Linares, Gustavo Ponce, Gleison N. Santos, “On a Class of Solutions to the Generalized Derivative Schrödinger Equations”, Acta. Math. Sin.-English Ser., 35:6 (2019), 1057  crossref
    16. Beatriz Juárez-Campos, Elena I. Kaikina, Pavel I. Naumkin, Héctor Francisco Ruiz-Paredes, “High-Speed Transmission in Long-Haul Electrical Systems”, International Journal of Differential Equations, 2018 (2018), 1  crossref
    17. Pavel I. Naumkin, Jhon J. Perez, “Higher-order derivative nonlinear Schrödinger equation in the critical case”, Journal of Mathematical Physics, 59:2 (2018)  crossref
    18. A. R. Khashimov, “Vtoraya kraevaya zadacha dlya nestatsionarnogo uravneniya tretego poryadka sostavnogo tipa”, Matematicheskie zametki SVFU, 24:4 (2017), 76–86  mathnet  crossref  elib
    19. Nakao Hayashi, Elena I. Kaikina, “Asymptotics for the third‐order nonlinear Schrödinger equation in the critical case”, Math Methods in App Sciences, 40:5 (2017), 1573  crossref
    20. Weiguo Zhang, Yujiao Sun, Zhengming Li, Shengbing Pei, Xiang Li, “Bounded traveling wave solutions for MKdV-Burgers equation with the negative dispersive coefficient”, DCDS-B, 21:8 (2016), 2883  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1815
    Russian version PDF:519
    English version PDF:115
    References:154
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025