Abstract:
In this paper the Cauchy problem for the Korteweg–de Vries equation ut+uxxx=uux, x∈R1, 0<t<T, with initial condition u(0,x)=u0(x) is considered in nonlocal formulation. In the case of an arbitrary initial function u0(x)∈L2(R1) the existence of a generalized L2-solution is proved, and its smoothness is studied for t>0. A class of well-posed solutions is distinguished among the generalized solutions under consideration, and within this class theorems concerning existence, uniqueness and continuous dependence of solutions on initial conditions are proved.
Bibliography: 28 titles.
Citation:
S. N. Kruzhkov, A. V. Faminskii, “Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation”, Math. USSR-Sb., 48:2 (1984), 391–421
\Bibitem{KruFam83}
\by S.~N.~Kruzhkov, A.~V.~Faminskii
\paper Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation
\jour Math. USSR-Sb.
\yr 1984
\vol 48
\issue 2
\pages 391--421
\mathnet{http://mi.mathnet.ru/eng/sm2138}
\crossref{https://doi.org/10.1070/SM1984v048n02ABEH002682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=691986}
\zmath{https://zbmath.org/?q=an:0549.35104|0537.35068}
Linking options:
https://www.mathnet.ru/eng/sm2138
https://doi.org/10.1070/SM1984v048n02ABEH002682
https://www.mathnet.ru/eng/sm/v162/i3/p396
This publication is cited in the following 92 articles:
Nakao Hayashi, Jesus A. Mendez-Navarro, Pavel I. Naumkin, “Large time asymptotics for the modified Korteweg–de Vries-Benjamin–Ono equation”, Nonlinear Analysis, 247 (2024), 113604
Émile Deléage, Felipe Linares, “Well-posedness for the initial value problem associated to the Zakharov–Kuznetsov (ZK) equation in asymmetric spaces”, Partial Differ. Equ. Appl., 4:2 (2023)
Julie L. Levandosky, Octavio Vera, “Smoothing properties for a coupled Zakharov-Kuznetsov system”, ejde, 2023:01-08 (2023), 11
Nakao Hayashi, Jesus A. Mendez-Navarro, Pavel I. Naumkin, “Modified scattering for the higher-order nonlinear Schrödinger equation with the Hartree-type nonlinearity”, J. Evol. Equ., 23:1 (2023)
Julie Levandosky, “Propagation of regularity for solutions to the KP-I equation”, Nonlinear Analysis, 234 (2023), 113315
Alexander Sukhinov, Alexander Chistyakov, Elena Timofeeva, Alla Nikitina, Yulia Belova, “The Construction and Research of the Modified “Upwind Leapfrog” Difference Scheme with Improved Dispersion Properties for the Korteweg–de Vries Equation”, Mathematics, 10:16 (2022), 2922
Nakao Hayashi, Pavel I. Naumkin, “Modified scattering for the nonlinear nonlocal Schrödinger equation in one-dimensional case”, Z. Angew. Math. Phys., 73:1 (2022)
Julie L. Levandosky, “Smoothing properties for a two-dimensional Kawahara equation”, Journal of Differential Equations, 316 (2022), 158
Nakao Hayashi, Pavel I. Naumkin, “Modified scattering for higher-order nonlinear Schrödinger equation in one space dimension”, J. Evol. Equ., 21:4 (2021), 4469
Beatriz Juarez-Campos, Pavel I. Naumkin, “Large time asymptotics for the higher-order nonlinear nonlocal Schrödinger equation”, Nonlinear Analysis, 205 (2021), 112238
Nakao Hayashi, Pavel I. Naumkin, “Modified scattering for the higher-order anisotropic nonlinear Schrödinger equation in two space dimensions”, Journal of Mathematical Physics, 62:7 (2021)
Pavel I. Naumkin, Isahi Sanchez-Suarez, “KdV type asymptotics for solutions to higher-order nonlinear Schrodinger equations”, ejde, 2020:01-132 (2020), 77
A. V. Faminskii, “O vnutrennei regulyarnosti reshenii dvumernogo uravneniya Zakharova–Kuznetsova”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 65, no. 3, Rossiiskii universitet druzhby narodov, M., 2019, 513–546
F. Linares, G. Ponce, G.N. Santos, “On a class of solutions to the generalized derivative Schrödinger equations II”, Journal of Differential Equations, 267:1 (2019), 97
Felipe Linares, Gustavo Ponce, Gleison N. Santos, “On a Class of Solutions to the Generalized Derivative Schrödinger Equations”, Acta. Math. Sin.-English Ser., 35:6 (2019), 1057
Beatriz Juárez-Campos, Elena I. Kaikina, Pavel I. Naumkin, Héctor Francisco Ruiz-Paredes, “High-Speed Transmission in Long-Haul Electrical Systems”, International Journal of Differential Equations, 2018 (2018), 1
Pavel I. Naumkin, Jhon J. Perez, “Higher-order derivative nonlinear Schrödinger equation in the critical case”, Journal of Mathematical Physics, 59:2 (2018)
A. R. Khashimov, “Vtoraya kraevaya zadacha dlya nestatsionarnogo uravneniya tretego poryadka sostavnogo tipa”, Matematicheskie zametki SVFU, 24:4 (2017), 76–86
Nakao Hayashi, Elena I. Kaikina, “Asymptotics for the third‐order nonlinear Schrödinger equation in the critical case”, Math Methods in App Sciences, 40:5 (2017), 1573
Weiguo Zhang, Yujiao Sun, Zhengming Li, Shengbing Pei, Xiang Li, “Bounded traveling wave solutions for MKdV-Burgers equation with the negative dispersive coefficient”, DCDS-B, 21:8 (2016), 2883