Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 52, Issue 2, Pages 553–555
DOI: https://doi.org/10.1070/SM1985v052n02ABEH002905
(Mi sm2067)
 

This article is cited in 6 scientific papers (total in 6 papers)

On a theorem of M. V. Keldysh concerning pointwise convergence of a sequence of polynomials

S. V. Kolesnikov
References:
Abstract: This article contains a proof of the following fact: for any bounded function f(z)f(z), |z|=1|z|=1, of the first Baire class such that |z|=1f(z)zndz=0|z|=1f(z)zndz=0 for n=0,1,n=0,1,, there exists a uniformly bounded sequence of polynomials on |z|=1|z|=1 converging pointwise to f(z)f(z).
Bibliography: 2 titles.
Received: 15.02.1984
Bibliographic databases:
UDC: 517.5+517.98
MSC: 41A10, 30B60, 30C10
Language: English
Original paper language: Russian
Citation: S. V. Kolesnikov, “On a theorem of M. V. Keldysh concerning pointwise convergence of a sequence of polynomials”, Math. USSR-Sb., 52:2 (1985), 553–555
Citation in format AMSBIB
\Bibitem{Kol84}
\by S.~V.~Kolesnikov
\paper On a~theorem of M.\,V.~Keldysh concerning pointwise convergence of a~sequence of polynomials
\jour Math. USSR-Sb.
\yr 1985
\vol 52
\issue 2
\pages 553--555
\mathnet{http://mi.mathnet.ru/eng/sm2067}
\crossref{https://doi.org/10.1070/SM1985v052n02ABEH002905}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=754477}
\zmath{https://zbmath.org/?q=an:0578.30031}
Linking options:
  • https://www.mathnet.ru/eng/sm2067
  • https://doi.org/10.1070/SM1985v052n02ABEH002905
  • https://www.mathnet.ru/eng/sm/v166/i4/p568
  • This publication is cited in the following 6 articles:
    1. M. Ya. Mazalov, “Criterion of uniform approximability by harmonic functions on compact sets in R3”, Proc. Steklov Inst. Math., 279 (2012), 110–154  mathnet  crossref  mathscinet  isi  elib
    2. Danielyan A.A., “The Peak-Interpolation Theorem of Bishop”, Complex Analysis and Dynamical Systems IV, Pt 1: Function Theory and Optimization, Contemporary Mathematics, 553, eds. Agranovsky M., BenArtzi M., Galloway G., Karp L., Reich S., Shoikhet D., Weinstein G., Zalcman L., Amer Mathematical Soc, 2011, 27–30  crossref  mathscinet  zmath  isi
    3. Danielyan A.A., “On a Polynomial Approximation Problem”, J. Approx. Theory, 162:4 (2010), 717–722  crossref  mathscinet  zmath  isi
    4. M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Sb. Math., 199:1 (2008), 13–44  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. Danielyan A., Saff E., “An Extension of E. Bishop's Localization Theorem”, J. Approx. Theory, 109:1 (2001), 148–156  crossref  mathscinet  zmath  isi
    6. A. A. Danielyan, “On a problem of M. A. Lavrent'ev concerning the representability of functions by series of polynomials in the complex domain”, Izv. Math., 63:2 (1999), 245–254  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:470
    Russian version PDF:122
    English version PDF:24
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025