Abstract:
Let $H_p$ be the Hardy space of functions $f$ that are analytic in the disk $|z|<1$ and let $J^\alpha f$ be the derivative of $f$ of order $\alpha$ in the sense of Weyl. It is shown, for example, that if $r$ is a rational function of degree $n\geqslant1$ with all its poles in the domain $|z|>1$, then $\|J^\alpha r\|_{H_\sigma}\leqslant cn^\alpha\|r\|_{H_p}$, where $p\in(1,\infty]$, $\alpha>0$, $\sigma=(\alpha+p^{-1})^{-1}$ and $c>0$ and depends only on $\alpha$ and $p$.
Bibliography: 32 titles.
Citation:
A. A. Pekarskii, “Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation”, Math. USSR-Sb., 52:2 (1985), 557–574
\Bibitem{Pek84}
\by A.~A.~Pekarskii
\paper Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation
\jour Math. USSR-Sb.
\yr 1985
\vol 52
\issue 2
\pages 557--574
\mathnet{http://mi.mathnet.ru/eng/sm2068}
\crossref{https://doi.org/10.1070/SM1985v052n02ABEH002906}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=754478}
\zmath{https://zbmath.org/?q=an:0609.41014|0567.41016}
Linking options:
https://www.mathnet.ru/eng/sm2068
https://doi.org/10.1070/SM1985v052n02ABEH002906
https://www.mathnet.ru/eng/sm/v166/i4/p571
This publication is cited in the following 27 articles:
A. D. Baranov, R. Zaruf, I. R. Kayumov, “Ob odnoi obratnoi zadache teorii approksimatsii v prostranstve Blokha”, UMN, 80:1(481) (2025), 155–156
F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271
A. D. Baranov, I. R. Kayumov, “Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains”, Sb. Math., 214:12 (2023), 1674–1693
A. D. Baranov, I. R. Kayumov, “Estimates for the
integrals of derivatives of rational functions in multiply connected
domains in the plane”, Izv. Math., 86:5 (2022), 839–851
A. D. Baranov, I. R. Kayumov, “Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries”, Russian Math. Surveys, 77:6 (2022), 1152–1154
A. D. Baranov, I. R. Kayumov, “Integral estimates of derivatives of rational functions in Hölder domains”, Dokl. Math., 106:3 (2022), 416–422
T. S. Mardvilko, “Povedenie $L_p$-kvazinormy proizvodnykh proizvedenii Blyashke na pryamoi”, PFMT, 2019, no. 4(41), 55–58
Baranov A. Zarouf R., “A Bernstein-Type Inequality for Rational Functions in Weighted Bergman Spaces”, Bull. Sci. Math., 137:4 (2013), 541–556
St. Petersburg Math. J., 23:2 (2012), 309–319
J. Math. Sci. (N. Y.), 182:5 (2012), 639–645
M. A. Qazi, Q. I. Rahman, “An L 2 inequality for rational functions”, Complex Variables & Elliptic Equations, 55:7 (2010), 657
V. R. Misyuk, “Ob obratnoi teoreme teorii ratsionalnykh priblizhenii dlya prostranstv Bergmana”, PFMT, 2010, no. 1(2), 34–37
A. P. Starovoitov, “Rational Approximations of Riemann–Liouville and Weyl Fractional Integrals”, Math. Notes, 78:3 (2005), 391–402
A. A. Pekarskii, “New Proof of the Semmes Inequality for the Derivative of the Rational Function”, Math. Notes, 72:2 (2002), 230–236
Yuri Kryakin, Walter Trebels, “q-Moduli of Continuity in Hp(), p>0, and an Inequality of Hardy and Littlewood”, Journal of Approximation Theory, 115:2 (2002), 238
Evsey Dyn'kin, Complex Analysis, Operators, and Related Topics, 2000, 77
N. K. Govil, R. N. Mohapatra, Recent Progress in Inequalities, 1998, 249
Evsey Dyn'kin, “Inequalities for Rational Functions”, Journal of Approximation Theory, 91:3 (1997), 349
V. I. Danchenko, “Several integral estimates of the derivatives of rational functions on sets of finite density”, Sb. Math., 187:10 (1996), 1443–1463
Dyakonov K., “Smooth Functions in the Range of a Hankel Operator”, Indian Univ. Math. J., 43:3 (1994), 805–838