Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 52, Issue 2, Pages 557–574
DOI: https://doi.org/10.1070/SM1985v052n02ABEH002906
(Mi sm2068)
 

This article is cited in 27 scientific papers (total in 27 papers)

Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation

A. A. Pekarskii
References:
Abstract: Let $H_p$ be the Hardy space of functions $f$ that are analytic in the disk $|z|<1$ and let $J^\alpha f$ be the derivative of $f$ of order $\alpha$ in the sense of Weyl. It is shown, for example, that if $r$ is a rational function of degree $n\geqslant1$ with all its poles in the domain $|z|>1$, then $\|J^\alpha r\|_{H_\sigma}\leqslant cn^\alpha\|r\|_{H_p}$, where $p\in(1,\infty]$, $\alpha>0$, $\sigma=(\alpha+p^{-1})^{-1}$ and $c>0$ and depends only on $\alpha$ and $p$.
Bibliography: 32 titles.
Received: 13.05.1983
Bibliographic databases:
UDC: 517.53
MSC: Primary 41A20, 30D55, 30E10; Secondary 26A33
Language: English
Original paper language: Russian
Citation: A. A. Pekarskii, “Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation”, Math. USSR-Sb., 52:2 (1985), 557–574
Citation in format AMSBIB
\Bibitem{Pek84}
\by A.~A.~Pekarskii
\paper Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation
\jour Math. USSR-Sb.
\yr 1985
\vol 52
\issue 2
\pages 557--574
\mathnet{http://mi.mathnet.ru/eng/sm2068}
\crossref{https://doi.org/10.1070/SM1985v052n02ABEH002906}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=754478}
\zmath{https://zbmath.org/?q=an:0609.41014|0567.41016}
Linking options:
  • https://www.mathnet.ru/eng/sm2068
  • https://doi.org/10.1070/SM1985v052n02ABEH002906
  • https://www.mathnet.ru/eng/sm/v166/i4/p571
  • This publication is cited in the following 27 articles:
    1. A. D. Baranov, R. Zaruf, I. R. Kayumov, “Ob odnoi obratnoi zadache teorii approksimatsii v prostranstve Blokha”, UMN, 80:1(481) (2025), 155–156  mathnet  crossref
    2. F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. A. D. Baranov, I. R. Kayumov, “Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains”, Sb. Math., 214:12 (2023), 1674–1693  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. A. D. Baranov, I. R. Kayumov, “Estimates for the integrals of derivatives of rational functions in multiply connected domains in the plane”, Izv. Math., 86:5 (2022), 839–851  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. A. D. Baranov, I. R. Kayumov, “Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries”, Russian Math. Surveys, 77:6 (2022), 1152–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. A. D. Baranov, I. R. Kayumov, “Integral estimates of derivatives of rational functions in Hölder domains”, Dokl. Math., 106:3 (2022), 416–422  mathnet  crossref  crossref  mathscinet  elib
    7. T. S. Mardvilko, “Povedenie $L_p$-kvazinormy proizvodnykh proizvedenii Blyashke na pryamoi”, PFMT, 2019, no. 4(41), 55–58  mathnet
    8. Baranov A. Zarouf R., “A Bernstein-Type Inequality for Rational Functions in Weighted Bergman Spaces”, Bull. Sci. Math., 137:4 (2013), 541–556  crossref  mathscinet  zmath  isi
    9. St. Petersburg Math. J., 23:2 (2012), 309–319  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    10. J. Math. Sci. (N. Y.), 182:5 (2012), 639–645  mathnet  crossref
    11. M. A. Qazi, Q. I. Rahman, “An L 2 inequality for rational functions”, Complex Variables & Elliptic Equations, 55:7 (2010), 657  crossref  mathscinet  zmath
    12. V. R. Misyuk, “Ob obratnoi teoreme teorii ratsionalnykh priblizhenii dlya prostranstv Bergmana”, PFMT, 2010, no. 1(2), 34–37  mathnet
    13. A. P. Starovoitov, “Rational Approximations of Riemann–Liouville and Weyl Fractional Integrals”, Math. Notes, 78:3 (2005), 391–402  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    14. A. A. Pekarskii, “New Proof of the Semmes Inequality for the Derivative of the Rational Function”, Math. Notes, 72:2 (2002), 230–236  mathnet  crossref  crossref  mathscinet  zmath  isi
    15. Yuri Kryakin, Walter Trebels, “q-Moduli of Continuity in Hp(), p>0, and an Inequality of Hardy and Littlewood”, Journal of Approximation Theory, 115:2 (2002), 238  crossref  mathscinet  zmath
    16. Evsey Dyn'kin, Complex Analysis, Operators, and Related Topics, 2000, 77  crossref
    17. N. K. Govil, R. N. Mohapatra, Recent Progress in Inequalities, 1998, 249  crossref
    18. Evsey Dyn'kin, “Inequalities for Rational Functions”, Journal of Approximation Theory, 91:3 (1997), 349  crossref  mathscinet  zmath
    19. V. I. Danchenko, “Several integral estimates of the derivatives of rational functions on sets of finite density”, Sb. Math., 187:10 (1996), 1443–1463  mathnet  crossref  crossref  mathscinet  zmath  isi
    20. Dyakonov K., “Smooth Functions in the Range of a Hankel Operator”, Indian Univ. Math. J., 43:3 (1994), 805–838  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:841
    Russian version PDF:241
    English version PDF:41
    References:95
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025