|
This article is cited in 5 scientific papers (total in 5 papers)
Imbedding theorems for Banach spaces of infinitely differentiable functions
G. S. Balashova
Abstract:
Algebraic conditions are obtained for imbedding of the spaces
$$
W^{\infty}\{a_n,p,r\}_{(G)}=\biggl\{u(x)\in C^\infty(G):\sum_{n=0}^\infty a_n\|D^nu\| _r^p<\infty\biggr\},
$$
where $G$ can be a closed interval, the line, a ray, or the circle. The imbedding conditions depend on the form of the domain.
Bibliography: 15 titles.
Received: 19.04.1984
Citation:
G. S. Balashova, “Imbedding theorems for Banach spaces of infinitely differentiable functions”, Mat. Sb. (N.S.), 128(170):1(9) (1985), 66–81; Math. USSR-Sb., 56:1 (1987), 63–78
Linking options:
https://www.mathnet.ru/eng/sm2018https://doi.org/10.1070/SM1987v056n01ABEH003024 https://www.mathnet.ru/eng/sm/v170/i1/p66
|
Statistics & downloads: |
Abstract page: | 383 | Russian version PDF: | 107 | English version PDF: | 27 | References: | 58 |
|