Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1988, Volume 60, Issue 2, Pages 315–337
DOI: https://doi.org/10.1070/SM1988v060n02ABEH003171
(Mi sm1857)
 

This article is cited in 5 scientific papers (total in 5 papers)

Asymptotics of a fundamental solution of a parabolic equation as $t\to\infty$

E. F. Lelikova
References:
Abstract: The author analyzes the behavior as $t\to\infty$ of the fundamental solution $G(x, s, t)$ of the Cauchy problem for the equation $v_t-v_{xx}-a(x)v_x-b(x)v=0$ with infinitely differentiable coefficients $a(x)$ and $b(x)$ decreasing as $|x|\to\infty$. For the case when the functions $a(x)$ and $b(x)$ can be expanded as $x\to\pm\infty$ on asymptotic series of the form
\begin{gather*} a(x)=a_1|x|^{-\alpha_1}+\dots +a_i|x|^{-\alpha_i}+\dots , \\ b(x)=b_1|x|^{-\beta_1}+\dots +b_i|x|^{-\beta_i}+\dots , \end{gather*}
where $\alpha_m$, $\beta_m\uparrow\infty$ as $m\to\infty$, $\alpha_1>1$, $\beta_1>2$, she constructs and justifies asymptotic expansion of the fundamental solution $G(x, s, t)$ to within any power of $G(x, s, t)$ uniformly with respect to all $x$ and $s$ in $\mathbf R^1$.
Bibliography: 12 titles.
Received: 09.12.1985
Bibliographic databases:
UDC: 517.95
MSC: Primary 35K15, 35B40; Secondary 41A60
Language: English
Original paper language: Russian
Citation: E. F. Lelikova, “Asymptotics of a fundamental solution of a parabolic equation as $t\to\infty$”, Math. USSR-Sb., 60:2 (1988), 315–337
Citation in format AMSBIB
\Bibitem{Lel87}
\by E.~F.~Lelikova
\paper Asymptotics of~a~fundamental solution of~a~parabolic equation as~ $t\to\infty$
\jour Math. USSR-Sb.
\yr 1988
\vol 60
\issue 2
\pages 315--337
\mathnet{http://mi.mathnet.ru//eng/sm1857}
\crossref{https://doi.org/10.1070/SM1988v060n02ABEH003171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=889595}
\zmath{https://zbmath.org/?q=an:0706.35014}
Linking options:
  • https://www.mathnet.ru/eng/sm1857
  • https://doi.org/10.1070/SM1988v060n02ABEH003171
  • https://www.mathnet.ru/eng/sm/v174/i3/p322
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:400
    Russian version PDF:112
    English version PDF:12
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024