|
This article is cited in 1 scientific paper (total in 1 paper)
An estimate for the number of terms in the Hilbert–Kamke problem. II
D. A. Mit'kin
Abstract:
It is proved that there exist integers $A_1,\dots,A_n$ such that the system of congruences
$$
\sum^s_{i=1}\binom{x_i}j=A_j(\bmod 2^{\alpha(n,j)}),\qquad j=1,\dots,n,
$$
where $\alpha(n,j)$ denotes the exponent of the highest power of 2 dividing $(n!/(j-1)!)2^{[(n-j+1)/2]+1}$, is solvable in integers $x_1,\dots,x_s$ only if the necessary condition $s\geqslant H(n)$ holds, where
$$
H(n)=\sum_{0\leqslant k\leqslant[\ln n/\ln 2]}2^k(2^{[n/2^k]}-1).
$$
From this the estimate $r(n)\geqslant H(n)$ is derived for the number $r(n)$ of terms in the
Hilbert–Kamke problem. Combined with a result from the previous paper, this gives the formula $r(n)=H(n)$ for $n\geqslant12$.
Bibliography: 4 titles.
Received: 25.11.1985
Citation:
D. A. Mit'kin, “An estimate for the number of terms in the Hilbert–Kamke problem. II”, Math. USSR-Sb., 60:2 (1988), 339–346
Linking options:
https://www.mathnet.ru/eng/sm1858https://doi.org/10.1070/SM1988v060n02ABEH003172 https://www.mathnet.ru/eng/sm/v174/i3/p345
|
Statistics & downloads: |
Abstract page: | 242 | Russian version PDF: | 77 | English version PDF: | 13 | References: | 40 |
|