Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 9, Pages 1355–1390
DOI: https://doi.org/10.1070/SM1996v187n09ABEH000160
(Mi sm160)
 

This article is cited in 39 scientific papers (total in 39 papers)

Local exact controllability of the two-dimensional Navier–Stokes equations

A. V. Fursikova, Yu. S. Èmanuilovb

a M. V. Lomonosov Moscow State University
b Moscow State Forest University
References:
Abstract: Let $\Omega \subset \mathbb R^2$ be a bounded domain with boundary $\partial \Omega$ consisting of two disjoint closed curves $\Gamma _0$ and $\Gamma _1$ such that $\Gamma _0$ is connected and $\Gamma _1\ne \varnothing$. The Navier–Stokes system $\partial _tv(t,x)-\Delta v+(v,\nabla )v+\nabla p=f(t,x)$, $\operatorname {div}v=0$ is considered in $\Omega$ with boundary and initial conditions $(v,\nu )\big |_{\Gamma _0}=\operatorname {rot}v\big |_{\Gamma _0}=0$ and $v\big|_{t=0}=v_0(x)$ (here $t\in (0,T)$, $x\in \Omega$, and $\nu$ is the outward normal to $\Gamma_0$). Let $\widehat v(t,x)$ be a solution of this system such that $\widehat v$ satisfies the indicated boundary conditions on $\Gamma_0$ and $\|\widehat v(0,\,\cdot \,)-v_0\|_{W^2_2(\Omega )}<\varepsilon$, where $\varepsilon =\varepsilon (\widehat v)\ll 1$. Then the existence of a control $u(t,x)$ on $(0,T)\times \Gamma _1$ with the following properties is proved: the solution $v(t,x)$ of the Navier–Stokes system such that $(v,\nu )\big |_{\Gamma _0}=\operatorname {rot}v\big |_{\Gamma _0}=0$, $v\big |_{t=0}=v_0(x)$ and $v\big |_{\Gamma _1}=u$, coincides with $\widehat v(T,\,\cdot \,)$ for $t = T$, that is, $v(T,x)=\widehat v(T,x)$. In particular, if $f$ and $\widehat v$ do not depend on $t$ and $\widehat v(x)$ is an unstable steady-state solution, then it follows from the above result that one can suppress the occurrence of turbulence by some control $\alpha$ on $\Gamma_1$. An analogous result is established in the case when $\Gamma _0=\partial \Omega$ and $\alpha(t,x)$ is a distributed control concentrated in an arbitrary subdomain $\omega \subset \Omega$.
Received: 04.03.1996
Bibliographic databases:
UDC: 517.977.1
Language: English
Original paper language: Russian
Citation: A. V. Fursikov, Yu. S. Èmanuilov, “Local exact controllability of the two-dimensional Navier–Stokes equations”, Sb. Math., 187:9 (1996), 1355–1390
Citation in format AMSBIB
\Bibitem{FurEma96}
\by A.~V.~Fursikov, Yu.~S.~\`Emanuilov
\paper Local exact controllability of the~two-dimensional Navier--Stokes equations
\jour Sb. Math.
\yr 1996
\vol 187
\issue 9
\pages 1355--1390
\mathnet{http://mi.mathnet.ru//eng/sm160}
\crossref{https://doi.org/10.1070/SM1996v187n09ABEH000160}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1422385}
\zmath{https://zbmath.org/?q=an:0869.35074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WE55900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030300523}
Linking options:
  • https://www.mathnet.ru/eng/sm160
  • https://doi.org/10.1070/SM1996v187n09ABEH000160
  • https://www.mathnet.ru/eng/sm/v187/i9/p103
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:629
    Russian version PDF:247
    English version PDF:35
    References:117
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024