Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 9, Pages 1391–1410
DOI: https://doi.org/10.1070/SM1996v187n09ABEH000161
(Mi sm161)
 

This article is cited in 9 scientific papers (total in 9 papers)

Propagation of perturbation in a singular Cauchy problem for degenerate quasilinear parabolic equations

A. E. Shishkov

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: Cauchy problems for a wide class of 'doubly degenerate' divergent quasilinear parabolic equations of an arbitrary order are studied. This class contains, in particular, the equations of non-stationary Newtonian and non-Newtonian filtration. For arbitrary initial functions of the lowest local regularity acceptable from the viewpoint of the theory of solubility it is proved that the rate of evolution of the supports of the generalized solutions is finite. Upper estimates of this rate are obtained which are exact both for large and small times.
Received: 04.12.1995
Russian version:
Matematicheskii Sbornik, 1996, Volume 187, Number 9, Pages 139–160
DOI: https://doi.org/10.4213/sm161
Bibliographic databases:
UDC: 517.9
MSC: 35K55, 35K65
Language: English
Original paper language: Russian
Citation: A. E. Shishkov, “Propagation of perturbation in a singular Cauchy problem for degenerate quasilinear parabolic equations”, Mat. Sb., 187:9 (1996), 139–160; Sb. Math., 187:9 (1996), 1391–1410
Citation in format AMSBIB
\Bibitem{Shi96}
\by A.~E.~Shishkov
\paper Propagation of perturbation in a~singular Cauchy problem for degenerate quasilinear parabolic equations
\jour Mat. Sb.
\yr 1996
\vol 187
\issue 9
\pages 139--160
\mathnet{http://mi.mathnet.ru/sm161}
\crossref{https://doi.org/10.4213/sm161}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1422386}
\zmath{https://zbmath.org/?q=an:0874.35059}
\transl
\jour Sb. Math.
\yr 1996
\vol 187
\issue 9
\pages 1391--1410
\crossref{https://doi.org/10.1070/SM1996v187n09ABEH000161}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WE55900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030300526}
Linking options:
  • https://www.mathnet.ru/eng/sm161
  • https://doi.org/10.1070/SM1996v187n09ABEH000161
  • https://www.mathnet.ru/eng/sm/v187/i9/p139
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:559
    Russian version PDF:196
    English version PDF:19
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024