Abstract:
A differential approach-evasion game with fixed termination time is studied. It is assumed that the phase vector of the conflict-control system is subjected to constraints that form a closed set in the position space. The ideology of stable bridges is used for solving the problem.
A method of convolution is proposed, which is used in several problems for constructing explicitly the stable absorption operator defining the stable bridges. A method of approximate construction of the maximal stable bridge in this game is suggested. The relations are written down that define a system of sets approximating the maximal stable bridge, and a control procedure with a guide is described, which can be used for obtaining an approximate solution of the approach problem.
Citation:
S. V. Grigor'eva, V. Yu. Pakhotinskikh, A. A. Uspenskii, V. N. Ushakov, “Construction of solutions in certain differential games with phase constraints”, Sb. Math., 196:4 (2005), 513–539
\Bibitem{GriPakUsp05}
\by S.~V.~Grigor'eva, V.~Yu.~Pakhotinskikh, A.~A.~Uspenskii, V.~N.~Ushakov
\paper Construction of solutions in certain differential games with phase constraints
\jour Sb. Math.
\yr 2005
\vol 196
\issue 4
\pages 513--539
\mathnet{http://mi.mathnet.ru/eng/sm1284}
\crossref{https://doi.org/10.1070/SM2005v196n04ABEH000890}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2144293}
\zmath{https://zbmath.org/?q=an:1121.91017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230563300009}
\elib{https://elibrary.ru/item.asp?id=9135685}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22544468498}
Linking options:
https://www.mathnet.ru/eng/sm1284
https://doi.org/10.1070/SM2005v196n04ABEH000890
https://www.mathnet.ru/eng/sm/v196/i4/p51
This publication is cited in the following 25 articles:
V. N. Ushakov, A. A. Ershov, “K konstruirovaniyu reshenii igrovoi zadachi s fiksirovannym momentom okonchaniya”, Tr. IMM UrO RAN, 30, no. 3, 2024, 255–273
Vladimir N. Ushakov, Aleksandr M. Tarasev, Andrei V. Ushakov, “Minimaksnaya differentsialnaya igra s fiksirovannym momentom okonchaniya”, MTIP, 16:3 (2024), 77–112
V. N. Ushakov, A. M. Tarasyev, A. A. Ershov, “A Supplement to Krasovskii's Unification Method in Differential Game Theory”, Dokl. Math., 2024
V. N. Ushakov, A. V. Ushakov, O. A. Kuvshinov, “Sblizhenie konfliktno upravlyaemykh sistem na konechnom promezhutke vremeni”, Izv. IMI UdGU, 64 (2024), 70–96
V. N. Ushakov, A. M. Tarasyev, A. A. Ershov, “Concerning one supplement to unification method of N.N. Krasovskii in differential games theory”, Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024), 65–71
V. N. Ushakov, A. A. Ershov, “On the Construction of Solutions to a Game Problem with a Fixed End Time”, Proc. Steklov Inst. Math., 327:S1 (2024), S239
V. N. Ushakov, A. M. Tarasyev, A. V. Ushakov, “Minimax Differential Game with a Fixed End Moment”, Dokl. Math., 110:S2 (2024), S495
V. N. Ushakov, A. A. Ershov, A. V. Ushakov, A. R. Matviichuk, “Nekotorye zadachi sblizheniya nelineinykh upravlyaemykh sistem v fiksirovannyi moment vremeni”, Izv. IMI UdGU, 62 (2023), 125–155
V. N. Ushakov, A. V. Ushakov, “O sblizhenii upravlyaemoi sistemy na konechnom promezhutke vremeni”, Izv. IMI UdGU, 60 (2022), 111–154
V. N. Ushakov, V. I. Ukhobotov, A. E. Lipin, “An Addition to the Definition of a Stable Bridge and an Approximating System of Sets in Differential Games”, Proc. Steklov Inst. Math., 304 (2019), 268–280
A. A. Uspenskii, P. D. Lebedev, “Vyyavlenie singulyarnosti u obobschennogo resheniya zadachi Dirikhle dlya uravneniya tipa eikonala v usloviyakh minimalnoi gladkosti granitsy kraevogo mnozhestva”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:1 (2018), 59–73
Valerii Patsko, Sergey Kumkov, Varvara Turova, Handbook of Dynamic Game Theory, 2018, 1
Valerii Patsko, Sergey Kumkov, Varvara Turova, Handbook of Dynamic Game Theory, 2018, 951
Botkin N., Turova V., Diepolder J., Bittner M., Holzapfel F., “Aircraft Control During Cruise Flight in Windshear Conditions: Viability Approach”, Dyn. Games Appl., 7:4, SI (2017), 594–608
Valerii Patsko, Sergey Kumkov, Varvara Turova, Handbook of Dynamic Game Theory, 2017, 1
Gusev M.I., “Application of penalty function method to computation of reachable sets for control systems with state constraints”, APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'16 (Albena, Bulgaria, 22–27 June 2016), AIP Conference Proceedings, 1773, ed. Todorov M., Amer Inst Physics, 2016, 050003
Gusev M., “on Estimates of Reachable Sets of Nonlinear Control Systems With State Constraints”, Proceedings of 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy'S Conference), ed. Tkhai V., IEEE, 2016
Mikhail Gusev, 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference), 2016, 1
Mikhail Gusev, Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain), 2015, 579
Nikolai Botkin, Karl-Heinz Hoffmann, Natalie Mayer, Varvara Turova, IFIP Advances in Information and Communication Technology, 391, System Modeling and Optimization, 2013, 235