Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 4, Pages 485–511
DOI: https://doi.org/10.1070/SM2005v196n04ABEH000889
(Mi sm1282)
 

This article is cited in 22 scientific papers (total in 22 papers)

Dichotomy property of solutions of quasilinear equations in problems on inertial manifolds

A. Yu. Goritskiia, V. V. Chepyzhovb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: Exponential dichotomy properties are studied for non-autonomous quasilinear partial differential equations that can be written as an ordinary differential equation $du/dt+Au=F(u,t)$ in a Hilbert space $H$. It is assumed that the non-linear function $F(u,t)$ is essentially subordinated to the linear operator $A$; namely, the gap property from the theory of inertial manifolds must hold. Integral manifolds $M_+$ and $M_-$ attracting at an exponential rate an arbitrary solution of this equation as $t\to+\infty$ and $t\to-\infty$, respectively, are constructed. The general results established are applied to the study of the dichotomy properties of solutions of a one-dimensional reaction-diffusion system and of a dissipative hyperbolic equation of sine-Gordon type.
Received: 25.04.2004
Russian version:
Matematicheskii Sbornik, 2005, Volume 196, Number 4, Pages 23–50
DOI: https://doi.org/10.4213/sm1282
Bibliographic databases:
UDC: 517.956
MSC: Primary 34G20, 34C45, 35B42, 35G10; Secondary 35K57
Language: English
Original paper language: Russian
Citation: A. Yu. Goritskii, V. V. Chepyzhov, “Dichotomy property of solutions of quasilinear equations in problems on inertial manifolds”, Mat. Sb., 196:4 (2005), 23–50; Sb. Math., 196:4 (2005), 485–511
Citation in format AMSBIB
\Bibitem{GorChe05}
\by A.~Yu.~Goritskii, V.~V.~Chepyzhov
\paper Dichotomy property of solutions of quasilinear equations in problems on inertial manifolds
\jour Mat. Sb.
\yr 2005
\vol 196
\issue 4
\pages 23--50
\mathnet{http://mi.mathnet.ru/sm1282}
\crossref{https://doi.org/10.4213/sm1282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2144292}
\zmath{https://zbmath.org/?q=an:1104.34044}
\elib{https://elibrary.ru/item.asp?id=9135684}
\transl
\jour Sb. Math.
\yr 2005
\vol 196
\issue 4
\pages 485--511
\crossref{https://doi.org/10.1070/SM2005v196n04ABEH000889}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230563300008}
\elib{https://elibrary.ru/item.asp?id=13845415}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22544436659}
Linking options:
  • https://www.mathnet.ru/eng/sm1282
  • https://doi.org/10.1070/SM2005v196n04ABEH000889
  • https://www.mathnet.ru/eng/sm/v196/i4/p23
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:763
    Russian version PDF:215
    English version PDF:9
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024