Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 4, Pages 485–511
DOI: https://doi.org/10.1070/SM2005v196n04ABEH000889
(Mi sm1282)
 

This article is cited in 22 scientific papers (total in 22 papers)

Dichotomy property of solutions of quasilinear equations in problems on inertial manifolds

A. Yu. Goritskiia, V. V. Chepyzhovb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: Exponential dichotomy properties are studied for non-autonomous quasilinear partial differential equations that can be written as an ordinary differential equation du/dt+Au=F(u,t) in a Hilbert space H. It is assumed that the non-linear function F(u,t) is essentially subordinated to the linear operator A; namely, the gap property from the theory of inertial manifolds must hold. Integral manifolds M+ and M attracting at an exponential rate an arbitrary solution of this equation as t+ and t, respectively, are constructed. The general results established are applied to the study of the dichotomy properties of solutions of a one-dimensional reaction-diffusion system and of a dissipative hyperbolic equation of sine-Gordon type.
Received: 25.04.2004
Bibliographic databases:
UDC: 517.956
MSC: Primary 34G20, 34C45, 35B42, 35G10; Secondary 35K57
Language: English
Original paper language: Russian
Citation: A. Yu. Goritskii, V. V. Chepyzhov, “Dichotomy property of solutions of quasilinear equations in problems on inertial manifolds”, Sb. Math., 196:4 (2005), 485–511
Citation in format AMSBIB
\Bibitem{GorChe05}
\by A.~Yu.~Goritskii, V.~V.~Chepyzhov
\paper Dichotomy property of solutions of quasilinear equations in problems on inertial manifolds
\jour Sb. Math.
\yr 2005
\vol 196
\issue 4
\pages 485--511
\mathnet{http://mi.mathnet.ru/eng/sm1282}
\crossref{https://doi.org/10.1070/SM2005v196n04ABEH000889}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2144292}
\zmath{https://zbmath.org/?q=an:1104.34044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230563300008}
\elib{https://elibrary.ru/item.asp?id=9135684}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22544436659}
Linking options:
  • https://www.mathnet.ru/eng/sm1282
  • https://doi.org/10.1070/SM2005v196n04ABEH000889
  • https://www.mathnet.ru/eng/sm/v196/i4/p23
  • This publication is cited in the following 22 articles:
    1. Rong-Nian Wang, Jia-Cheng Zhao, “The 3-D Nonlinear Hyperbolic–Parabolic Problems: Invariant Manifolds”, J Dyn Diff Equat, 35:4 (2023), 3113  crossref
    2. Jia-Cheng Zhao, Rong-Nian Wang, “The invariant manifold approach applied to global long-time dynamics of FitzHugh-Nagumo systems”, Journal of Differential Equations, 375 (2023), 120  crossref
    3. Jakub Banaśkiewicz, Alexandre N. Carvalho, Juan Garcia-Fuentes, Piotr Kalita, “Autonomous and Non-autonomous Unbounded Attractors in Evolutionary Problems”, J Dyn Diff Equat, 2022  crossref
    4. Na Cui, Tingcong Zhang, “Inertial manifolds for the 3D hyperviscous Navier–Stokes equation with L2 force”, Math Methods in App Sciences, 45:17 (2022), 10543  crossref
    5. Thieu Huy Nguyen, Xuan-Quang Bui, Duc Thuan Do, “Regularity of the Inertial Manifolds for Evolution Equations in Admissible Spaces and Finite-Dimensional Feedback Controllers”, J Dyn Control Syst, 28:4 (2022), 657  crossref
    6. Romanov V A., “Final Dynamics of Systems of Nonlinear Parabolic Equations on the Circle”, AIMS Math., 6:12 (2021), 13407–13422  crossref  mathscinet  isi
    7. Li X. Sun Ch., “Inertial Manifolds For the 3D Modified-Leray-Alpha Model”, J. Differ. Equ., 268:4 (2020), 1532–1569  crossref  mathscinet  zmath  isi
    8. Chepyzhov V.V., Kostianko A., Zelik S., “Inertial Manifolds For the Hyperbolic Relaxation of Semilinear Parabolic Equations”, Discrete Contin. Dyn. Syst.-Ser. B, 24:3, SI (2019), 1115–1142  crossref  mathscinet  zmath  isi  scopus
    9. Pimentel E.A., Pimentel J.F.S., “Estimates for a class of slowly non-dissipative reaction-diffusion equations”, Rocky Mt. J. Math., 46:3 (2016), 1011–1028  crossref  mathscinet  zmath  isi  scopus
    10. Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327  crossref  mathscinet  zmath  isi  elib  scopus
    11. Natalia Chalkina, Solid Mechanics and Its Applications, 211, Continuous and Distributed Systems, 2014, 189  crossref
    12. A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. A. Yu. Goritskii, N. A. Chalkina, “Inertial manifolds for weakly and strongly dissipative hyperbolic equations”, J. Math. Sci. (N. Y.), 197:3 (2014), 291–302  mathnet  crossref  elib
    14. Chalkina N.A., “Sufficient Condition for the Existence of an Inertial Manifold for a Hyperbolic Equation with Weak and Strong Dissipation”, Russ. J. Math. Phys., 19:1 (2012), 11–20  crossref  mathscinet  zmath  isi  elib  scopus
    15. George Osipenko, Mathematics of Complexity and Dynamical Systems, 2012, 48  crossref
    16. Chalkina N.A., “Inertsialnoe mnogoobrazie dlya giperbolicheskogo uravneniya s dissipatsiei”, Vestnik moskovskogo universiteta. seriya 1: matematika. mekhanika, 2011, no. 6, 3–7  mathnet  mathscinet  zmath  elib
    17. “On the seminar on qualitative theory of differential equations at Moscow state university”, Diff Equat, 47:11 (2011), 1680  crossref
    18. N. A. Chalkina, “Inertial manifold for a hyperbolic equation with dissipation”, Moscow Univ. Math. Bull., 66:6 (2011), 231  crossref
    19. Koksch N., Siegmund S., “Feedback control via inertial manifolds for nonautonomous evolution equations”, Commun. Pure Appl. Anal., 10:3 (2009), 917–936  crossref  mathscinet  isi
    20. George Osipenko, Encyclopedia of Complexity and Systems Science, 2009, 936  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:824
    Russian version PDF:229
    English version PDF:27
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025