Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 2, Pages 197–219
DOI: https://doi.org/10.1070/SM1995v186n02ABEH000012
(Mi sm12)
 

This article is cited in 16 scientific papers (total in 16 papers)

On the continuity of the solutions of a class of non-local problems for an elliptic equation

A. K. Gushchina, V. P. Mikhailov

a Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: This paper is devoted to a study of the connection between the notion of an $(n-1)$-dimensionally continuous (weak) solution for a non-local problem, which was earlier introduced by the authors, with the notion of a classical solution. Under natural suppositions on the operator entering the non-local condition, the continuity of the weak solution in the closure of the domain under consideration is proved for all arbitrary continuous boundary function. The notion of an $(n-1)$-dimensionally continuous solution is convenient when studying the Fredholm property of the problem. In the previous paper of the authors tl.e Fredholm property in such a setting was proved for a wide class of non-local problems. When studying the uniqueness it is easier to deal with a classical solution. The main result of this paper enables one, in particular, to use simultaneously the advantages of both approaches: to apply the classical maximum principle in the proof of the uniqueness (and hence, by the Fredholm property, the existence) of a weak solution.
Received: 10.11.1994
Russian version:
Matematicheskii Sbornik, 1995, Volume 186, Number 2, Pages 37–58
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: Primary 35J25; Secondary 47F05, 47N20
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, V. P. Mikhailov, “On the continuity of the solutions of a class of non-local problems for an elliptic equation”, Mat. Sb., 186:2 (1995), 37–58; Sb. Math., 186:2 (1995), 197–219
Citation in format AMSBIB
\Bibitem{GusMik95}
\by A.~K.~Gushchin, V.~P.~Mikhailov
\paper On the continuity of the~solutions of a~class of non-local problems for an~elliptic equation
\jour Mat. Sb.
\yr 1995
\vol 186
\issue 2
\pages 37--58
\mathnet{http://mi.mathnet.ru/sm12}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1330589}
\zmath{https://zbmath.org/?q=an:0849.35025}
\transl
\jour Sb. Math.
\yr 1995
\vol 186
\issue 2
\pages 197--219
\crossref{https://doi.org/10.1070/SM1995v186n02ABEH000012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ91900012}
Linking options:
  • https://www.mathnet.ru/eng/sm12
  • https://doi.org/10.1070/SM1995v186n02ABEH000012
  • https://www.mathnet.ru/eng/sm/v186/i2/p37
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:431
    Russian version PDF:120
    English version PDF:17
    References:42
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024