Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 2, Pages 181–196
DOI: https://doi.org/10.1070/SM1995v186n02ABEH000011
(Mi sm11)
 

This article is cited in 4 scientific papers (total in 4 papers)

Generalized localization for the multiple Walsh–Fourier series of functions in $L_p$, $p\geqslant 1$

S. K. Bloshanskayaa, I. L. Bloshanskiib

a Moscow Engineering Physics Institute (State University)
b Moscow State Pedagogical University
References:
Abstract: In this paper the concept of generalized localization almost everywhere (GL) is analyzed for the multiple Fourier–Walsh series of functions in $L_p(T^N)$, $T^N=[0,1)^N$, $p\geqslant 1$ summable over rectangles. (For multiple trigonometric series and Fourier integrals GL was introduced and analyzed earlier by one of the authors.)
If $p>1$, then it is proved that GL holds for double Walsh–Fourier series on any open set. It breaks down on any set $E\subset T^N$ which is not dense in $T^N$ if $N=2$ and $p=1$ and also in the class $\mathbb C$ if $N\geqslant 3$.
All results on the Walsh system obtained in this paper are identical to the results on GL for Fourier series in the trigonometric system obtained earlier by one of the authors.
Received: 05.04.1994
Bibliographic databases:
UDC: 517.5
MSC: 42B05
Language: English
Original paper language: Russian
Citation: S. K. Bloshanskaya, I. L. Bloshanskii, “Generalized localization for the multiple Walsh–Fourier series of functions in $L_p$, $p\geqslant 1$”, Sb. Math., 186:2 (1995), 181–196
Citation in format AMSBIB
\Bibitem{BloBlo95}
\by S.~K.~Bloshanskaya, I.~L.~Bloshanskii
\paper Generalized localization for the~multiple Walsh--Fourier series of functions in $L_p$, $p\geqslant 1$
\jour Sb. Math.
\yr 1995
\vol 186
\issue 2
\pages 181--196
\mathnet{http://mi.mathnet.ru//eng/sm11}
\crossref{https://doi.org/10.1070/SM1995v186n02ABEH000011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1330588}
\zmath{https://zbmath.org/?q=an:0847.42022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ91900011}
Linking options:
  • https://www.mathnet.ru/eng/sm11
  • https://doi.org/10.1070/SM1995v186n02ABEH000011
  • https://www.mathnet.ru/eng/sm/v186/i2/p21
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024