|
This article is cited in 23 scientific papers (total in 23 papers)
On the dimension of the solution space of elliptic systems in unbounded domains
A. A. Kon'kov
Abstract:
This article is a study of the Dirichlet problem
$$
\begin{cases}
Lu=0&\text{in}\ \Omega,
\\
\partial^\alpha u\big|_{\partial \Omega}=0,&|\alpha|\leqslant m-1,
\end{cases}
$$
where $\Omega\subset R^n$ is an open (possibly unbounded) set,
$\alpha=(\alpha_1,\dots,\alpha_n)$ is a multi-index,
$|\alpha|=\alpha_1+\dots+\alpha_n$,
$$
L=\sum_{|\alpha|=|\beta|=m}\partial^\alpha \bigl(a_{\alpha\beta}(x)\partial^\beta\bigr),
$$
and the coefficients $a_{\alpha\beta}(x)$ are $N\times N$ matrices.
Received: 29.01.1993
Citation:
A. A. Kon'kov, “On the dimension of the solution space of elliptic systems in unbounded domains”, Mat. Sb., 184:12 (1993), 23–52; Russian Acad. Sci. Sb. Math., 80:2 (1995), 411–434
Linking options:
https://www.mathnet.ru/eng/sm1030https://doi.org/10.1070/SM1995v080n02ABEH003531 https://www.mathnet.ru/eng/sm/v184/i12/p23
|
Statistics & downloads: |
Abstract page: | 1012 | Russian version PDF: | 142 | English version PDF: | 9 | References: | 41 | First page: | 1 |
|