Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1995, Volume 80, Issue 2, Pages 435–444
DOI: https://doi.org/10.1070/SM1995v080n02ABEH003532
(Mi sm1031)
 

This article is cited in 7 scientific papers (total in 7 papers)

Finite $p$-groups admitting $p$-automorphisms with few fixed points

E. I. Khukhro

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The following theorem is proved: if a finite $p$-group $P$ admits an automorphism of order $p^k$ having exactly $p^n$ fixed points, then it contains a subgroup of $(p, k,n)$-bounded index that is solvable of $(p,k)$-bounded derived length. The proof uses Kreknin's theorem stating that a Lie ring admitting a regular (that is, without nontrivial fixed points) automorphism of finite order $m$, is solvable of $m$-bounded derived length $f(m)$. Some techniques from the theory of powerful $p$-groups are also used, especially, from a recent work of Shalev, who proved that, under the hypothesis of the theorem, the derived length of $P$ is bounded in terms of $p$, $k$, and $n$. The following general proposition is also used (this proposition is proved on the basis of Kreknin's theorem with the help of the Mal'tsev correspondence, given by the Baker–Hausdorff formula): if a nilpotent group $G$ of class $c$ admits an automorphism $\varphi$ of finite order $m$, then, for some $(c,m)$-bounded number $N=N(c,m)$, the derived subgroup $(G^N)^{(f(m))}$ is contained in the normal closure $\langle C_G(\varphi)^G\rangle$ of the centralizer $C_G(\varphi)$. The scheme of the proof of the theorem is as follows. Standard arguments show that $P$ may be assumed to be a powerful $p$-group. Next, it is proved that $P^{f(p^k)}$ is nilpotent of $(p,k,n)$-bounded class. Then the proposition is applied to $P^{f(p^k)}$. There exist explicit upper bounds for the functions from the statement of the theorem.
Received: 28.09.1992
Bibliographic databases:
UDC: 512.542.3
MSC: 20D15, 20D45
Language: English
Original paper language: Russian
Citation: E. I. Khukhro, “Finite $p$-groups admitting $p$-automorphisms with few fixed points”, Russian Acad. Sci. Sb. Math., 80:2 (1995), 435–444
Citation in format AMSBIB
\Bibitem{Khu93}
\by E.~I.~Khukhro
\paper Finite $p$-groups admitting $p$-automorphisms with few fixed points
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 80
\issue 2
\pages 435--444
\mathnet{http://mi.mathnet.ru//eng/sm1031}
\crossref{https://doi.org/10.1070/SM1995v080n02ABEH003532}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1254804}
\zmath{https://zbmath.org/?q=an:0836.20018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995QR47400009}
Linking options:
  • https://www.mathnet.ru/eng/sm1031
  • https://doi.org/10.1070/SM1995v080n02ABEH003532
  • https://www.mathnet.ru/eng/sm/v184/i12/p53
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:445
    Russian version PDF:115
    English version PDF:14
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024