Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2021, Volume 24, Number 2, Pages 145–166
DOI: https://doi.org/10.15372/SJNM20210203
(Mi sjvm772)
 

This article is cited in 3 scientific papers (total in 3 papers)

A computational model of fluid filtration in fractured porous media

M. I. Ivanov, I. A. Kremer, Yu. M. Laevsky

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: The paper discusses a computational 3D double porosity model of a two-phase incompressible fluid filtration in a fractured-porous medium. Conservation laws are formulated in the integral form, and for their spatial approximation, a combination of the mixed finite element method to determine the total flow and pressure velocities is used and the finite volume method to determine the saturations in porous blocks and in fractures. The approximation of equations for saturations according to an explicit scheme with upwinding to eliminate unphysical oscillations is carried out. The model under consideration includes the injection and production wells with total flow rates. For the total velocities and pressures, the Neumann problem is formulated, for which the condition of unique solvability is indicated and a method for solving it without additional conditions is proposed. For an explicit upwind scheme for solving equations for saturations, a weak maximum principle is established, illustrated by computational experiments.
Key words: fluid filtration, fractured porous media, double porosity, porous blocks, fractures, conservation laws, mixed finite element method, upwind scheme, maximum principle.
Funding agency Grant number
Russian Science Foundation 19-11-00048
This work was supported by the Russian Science Foundation (project no.В 19-11-00048).
Received: 03.10.2020
Revised: 17.10.2020
Accepted: 04.02.2021
English version:
Numerical Analysis and Applications, 2021, Volume 14, Issue 2, Pages 126–144
DOI: https://doi.org/10.1134/S1995423921020038
Bibliographic databases:
Document Type: Article
UDC: 519.688
Language: Russian
Citation: M. I. Ivanov, I. A. Kremer, Yu. M. Laevsky, “A computational model of fluid filtration in fractured porous media”, Sib. Zh. Vychisl. Mat., 24:2 (2021), 145–166; Num. Anal. Appl., 14:2 (2021), 126–144
Citation in format AMSBIB
\Bibitem{IvaKreLae21}
\by M.~I.~Ivanov, I.~A.~Kremer, Yu.~M.~Laevsky
\paper A computational model of fluid filtration in fractured porous media
\jour Sib. Zh. Vychisl. Mat.
\yr 2021
\vol 24
\issue 2
\pages 145--166
\mathnet{http://mi.mathnet.ru/sjvm772}
\crossref{https://doi.org/10.15372/SJNM20210203}
\transl
\jour Num. Anal. Appl.
\yr 2021
\vol 14
\issue 2
\pages 126--144
\crossref{https://doi.org/10.1134/S1995423921020038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000678084300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111367926}
Linking options:
  • https://www.mathnet.ru/eng/sjvm772
  • https://www.mathnet.ru/eng/sjvm/v24/i2/p145
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :20
    References:31
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024