Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2021, Volume 24, Number 2, Pages 167–177
DOI: https://doi.org/10.15372/SJNM20210204
(Mi sjvm773)
 

A rational algorithm for checking the congruence of unitoid matrices

Kh. D. Ikramova, A. M. Nazarib

a Lomonosov Moscow State University, Moscow, Russia
b Arak University, Arak, Islamic Republic of Iran
References:
Abstract: A matrix is said to be unitoid if it can be brought to diagonal form by a congruence transformation. We say that an algorithm is rational if it is finite and uses the arithmetic operations only. There exist rational methods designed for checking congruence of particular classes of unitoid matrices, for example, Hermitian, accretive, or dissipative matrices. We propose a rational algorithm for checking congruence of general unitoid matrices. The algorithm is heuristic in the sense that the user is required to set the values of two integral parameters $M$ and $N$. The choice of these values depends on the available a priori information about the proximity of neighboring canonical angles of the matrices under checking.
Key words: congruence, unitoid matrix (unitoid), cosquare, similarity, Toeplitz decomposition, indices of inertia, Pythagorean triples, Maple, circulants.
Received: 25.02.2020
Revised: 16.07.2020
Accepted: 04.02.2021
English version:
Numerical Analysis and Applications, 2021, Volume 14, Issue 2, Pages 145–154
DOI: https://doi.org/10.1134/S199542392102004
Bibliographic databases:
Document Type: Article
UDC: 512.643
Language: Russian
Citation: Kh. D. Ikramov, A. M. Nazari, “A rational algorithm for checking the congruence of unitoid matrices”, Sib. Zh. Vychisl. Mat., 24:2 (2021), 167–177; Num. Anal. Appl., 14:2 (2021), 145–154
Citation in format AMSBIB
\Bibitem{IkrNaz21}
\by Kh.~D.~Ikramov, A.~M.~Nazari
\paper A rational algorithm for checking the congruence of unitoid matrices
\jour Sib. Zh. Vychisl. Mat.
\yr 2021
\vol 24
\issue 2
\pages 167--177
\mathnet{http://mi.mathnet.ru/sjvm773}
\crossref{https://doi.org/10.15372/SJNM20210204}
\transl
\jour Num. Anal. Appl.
\yr 2021
\vol 14
\issue 2
\pages 145--154
\crossref{https://doi.org/10.1134/S199542392102004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000678084300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111390934}
Linking options:
  • https://www.mathnet.ru/eng/sjvm773
  • https://www.mathnet.ru/eng/sjvm/v24/i2/p167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025