Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2021, Volume 24, Number 2, Pages 131–144
DOI: https://doi.org/10.15372/SJNM20210202
(Mi sjvm771)
 

The errors investigation in problems for solving simple equations of mathematical physics by iterative methods

V. P. Zhitnikova, N. M. Sherykhalinaa, R. R. Muksimovab

a Ufa State Aviation Technical University, Ufa, 450000 Russia
b Saint Petersburg State University of Civil Aviation, St. Petersburg, 196210 Russia
References:
Abstract: The error caused by the inaccuracy of the equation system solution by iterative methods has been investigated. The upper error estimate for the axially symmetric heat equation is found in the accumulation process in several time steps. The upper estimate shows the linear dependence of the error on the threshold value of the limiting criterion for the iterations number, the quadratic error growth from the range partitions number, and its independence of the time partitions number. The computing experiment shows a good correspondence of the obtained estimate to real errors with boundary and initial conditions of various types. The quadratic error growth for the Laplace equation, caused by the accuracy limitation for applying the iteration method, on the number of range partitions $n$, is empirically found. A similar error growth for the biharmonic equation is found in proportion to $n^4$.
Key words: heat equation, implicit scheme, Laplace equation, biharmonic equation, iteration method, numerical filtration.
Funding agency Grant number
Russian Foundation for Basic Research 17-07-00356
This work was supported by the Russian Foundation for Basic Research (project no.В 17-07-00356).
Received: 30.07.2018
Revised: 26.05.2019
Accepted: 04.02.2021
English version:
Numerical Analysis and Applications, 2021, Volume 14, Issue 2, Pages 115–125
DOI: https://doi.org/10.1134/S1995423921020026
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: V. P. Zhitnikov, N. M. Sherykhalina, R. R. Muksimova, “The errors investigation in problems for solving simple equations of mathematical physics by iterative methods”, Sib. Zh. Vychisl. Mat., 24:2 (2021), 131–144; Num. Anal. Appl., 14:2 (2021), 115–125
Citation in format AMSBIB
\Bibitem{ZhiSheMuk21}
\by V.~P.~Zhitnikov, N.~M.~Sherykhalina, R.~R.~Muksimova
\paper The errors investigation in problems for solving simple equations of mathematical physics by iterative methods
\jour Sib. Zh. Vychisl. Mat.
\yr 2021
\vol 24
\issue 2
\pages 131--144
\mathnet{http://mi.mathnet.ru/sjvm771}
\crossref{https://doi.org/10.15372/SJNM20210202}
\elib{https://elibrary.ru/item.asp?id=45635599}
\transl
\jour Num. Anal. Appl.
\yr 2021
\vol 14
\issue 2
\pages 115--125
\crossref{https://doi.org/10.1134/S1995423921020026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000678084300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111378118}
Linking options:
  • https://www.mathnet.ru/eng/sjvm771
  • https://www.mathnet.ru/eng/sjvm/v24/i2/p131
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:95
    Full-text PDF :29
    References:24
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024