Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2021, Volume 24, Number 2, Pages 117–129
DOI: https://doi.org/10.15372/SJNM20210201
(Mi sjvm770)
 

This article is cited in 2 scientific papers (total in 2 papers)

Generalized bivariate Hermite fractal interpolation function

S. Jhaa, A. K. B. Chanda, M. A. Navascuesb

a Department of Mathematics, Indian Institute of Technology Madras, Chennai, 600036, India
b Departamento de Matematica Aplicada, Escuela de Ingenieria y Arquitectura, Universidad de Zaragoza, Zaragoza, 500018, Spain
References:
Abstract: Fractal interpolation provides an efficient way to describe the smooth or non-smooth structure associated with nature and scientific data. The aim of this paper is to introduce a bivariate Hermite fractal interpolation formula which generalizes the classical Hermite interpolation formula for two variables. It is shown here that the proposed Hermite fractal interpolation function and its derivatives of all orders are good approximations of the original function even if the partial derivatives of the original functions are non-smooth in nature.
Key words: fractals, fractal interpolation, Hermite interpolation, fractal surface, convergence.
Received: 01.11.2018
Revised: 01.11.2018
Accepted: 01.11.2018
English version:
Numerical Analysis and Applications, 2021, Volume 14, Issue 2, Pages 103–114
DOI: https://doi.org/10.1134/S1995423921020014
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Jha, A. K. B. Chand, M. A. Navascues, “Generalized bivariate Hermite fractal interpolation function”, Sib. Zh. Vychisl. Mat., 24:2 (2021), 117–129; Num. Anal. Appl., 14:2 (2021), 103–114
Citation in format AMSBIB
\Bibitem{JhaChaNav21}
\by S.~Jha, A.~K.~B.~Chand, M.~A.~Navascues
\paper Generalized bivariate Hermite fractal interpolation function
\jour Sib. Zh. Vychisl. Mat.
\yr 2021
\vol 24
\issue 2
\pages 117--129
\mathnet{http://mi.mathnet.ru/sjvm770}
\crossref{https://doi.org/10.15372/SJNM20210201}
\transl
\jour Num. Anal. Appl.
\yr 2021
\vol 14
\issue 2
\pages 103--114
\crossref{https://doi.org/10.1134/S1995423921020014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000678084300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111398766}
Linking options:
  • https://www.mathnet.ru/eng/sjvm770
  • https://www.mathnet.ru/eng/sjvm/v24/i2/p117
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025