|
This article is cited in 2 scientific papers (total in 2 papers)
Generalized bivariate Hermite fractal interpolation function
S. Jhaa, A. K. B. Chanda, M. A. Navascuesb a Department of Mathematics, Indian Institute of Technology Madras, Chennai, 600036, India
b Departamento de Matematica Aplicada, Escuela de Ingenieria y Arquitectura, Universidad de Zaragoza, Zaragoza, 500018,
Spain
Abstract:
Fractal interpolation provides an efficient way to describe the smooth or non-smooth structure associated with nature and scientific data. The aim of this paper is to introduce a bivariate Hermite fractal interpolation formula which generalizes the classical Hermite interpolation formula for two variables. It is shown here that the proposed Hermite fractal interpolation function and its derivatives of all orders are good approximations of the original function even if the partial derivatives of the original functions are non-smooth in nature.
Key words:
fractals, fractal interpolation, Hermite interpolation, fractal surface, convergence.
Received: 01.11.2018 Revised: 01.11.2018 Accepted: 01.11.2018
Citation:
S. Jha, A. K. B. Chand, M. A. Navascues, “Generalized bivariate Hermite fractal interpolation function”, Sib. Zh. Vychisl. Mat., 24:2 (2021), 117–129; Num. Anal. Appl., 14:2 (2021), 103–114
Linking options:
https://www.mathnet.ru/eng/sjvm770 https://www.mathnet.ru/eng/sjvm/v24/i2/p117
|
|