Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2019, Volume 22, Number 4, Pages 437–451
DOI: https://doi.org/10.15372/SJNM20190404
(Mi sjvm724)
 

This article is cited in 3 scientific papers (total in 3 papers)

A solution of the degenerate Neumann problem by the finite element method

M. I. Ivanova, I. A. Kremerab, M. V. Urevba

a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Full-text PDF (571 kB) Citations (3)
References:
Abstract: This paper deals with the solution of the degenerate Neumann problem for the diffusion equation by the finite element method. First, an extended generalized formulation of the Neumann problem in the Sobolev space $H^1(\Omega)$ is derived and investigated. Then a discrete analogue of this problem is formulated using standard finite element approximations of the space $H^1(\Omega)$. An iterative method for solving the corresponding SLAE is proposed. Some examples of solving the model problems are used to discuss the numerical peculiarities of the algorithm proposed.
Key words: degenerate Neumann problem, matching conditions, orthogonalization of the right-hand side, finite elements.
Received: 18.03.2019
Accepted: 25.07.2019
English version:
Numerical Analysis and Applications, 2019, Volume 12, Issue 4, Pages 359–371
DOI: https://doi.org/10.1134/S1995423919040049
Bibliographic databases:
Document Type: Article
UDC: 519.632
Language: Russian
Citation: M. I. Ivanov, I. A. Kremer, M. V. Urev, “A solution of the degenerate Neumann problem by the finite element method”, Sib. Zh. Vychisl. Mat., 22:4 (2019), 437–451; Num. Anal. Appl., 12:4 (2019), 359–371
Citation in format AMSBIB
\Bibitem{IvaKreUre19}
\by M.~I.~Ivanov, I.~A.~Kremer, M.~V.~Urev
\paper A solution of the degenerate Neumann problem by the finite element method
\jour Sib. Zh. Vychisl. Mat.
\yr 2019
\vol 22
\issue 4
\pages 437--451
\mathnet{http://mi.mathnet.ru/sjvm724}
\crossref{https://doi.org/10.15372/SJNM20190404}
\transl
\jour Num. Anal. Appl.
\yr 2019
\vol 12
\issue 4
\pages 359--371
\crossref{https://doi.org/10.1134/S1995423919040049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000513714900004}
Linking options:
  • https://www.mathnet.ru/eng/sjvm724
  • https://www.mathnet.ru/eng/sjvm/v22/i4/p437
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :32
    References:31
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024