Abstract:
This paper deals with the solution of the degenerate Neumann problem for the diffusion equation by the finite element method. First, an extended generalized formulation of the Neumann problem in the Sobolev space H1(Ω) is derived and investigated. Then a discrete analogue of this problem is formulated using standard finite element approximations of the space H1(Ω). An iterative method for solving the corresponding SLAE is proposed. Some examples of solving the model problems are used to discuss the numerical peculiarities of the algorithm proposed.
Key words:
degenerate Neumann problem, matching conditions, orthogonalization of the right-hand side, finite elements.
Citation:
M. I. Ivanov, I. A. Kremer, M. V. Urev, “A solution of the degenerate Neumann problem by the finite element method”, Sib. Zh. Vychisl. Mat., 22:4 (2019), 437–451; Num. Anal. Appl., 12:4 (2019), 359–371
\Bibitem{IvaKreUre19}
\by M.~I.~Ivanov, I.~A.~Kremer, M.~V.~Urev
\paper A solution of the degenerate Neumann problem by the finite element method
\jour Sib. Zh. Vychisl. Mat.
\yr 2019
\vol 22
\issue 4
\pages 437--451
\mathnet{http://mi.mathnet.ru/sjvm724}
\crossref{https://doi.org/10.15372/SJNM20190404}
\transl
\jour Num. Anal. Appl.
\yr 2019
\vol 12
\issue 4
\pages 359--371
\crossref{https://doi.org/10.1134/S1995423919040049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000513714900004}
Linking options:
https://www.mathnet.ru/eng/sjvm724
https://www.mathnet.ru/eng/sjvm/v22/i4/p437
This publication is cited in the following 3 articles:
Bruno A. Roccia, Carmina Alturria Lanzardo, Fernando D. Mazzone, Cristian G. Gebhardt, “On the homogeneous torsion problem for heterogeneous and orthotropic cross-sections: Theoretical and numerical aspects”, Applied Numerical Mathematics, 201 (2024), 579
Maksim I. Ivanov, Igor A. Kremer, Yuri M. Laevsky, “On non-uniqueness of pressures in problems of fluid filtration in fractured-porous media”, Journal of Computational and Applied Mathematics, 425 (2023), 115052
M. I. Ivanov, I. A. Kremer, Yu. M. Laevsky, “Solving the Pure Neumann Problem by a Mixed Finite Element Method”, Numer. Analys. Appl., 15:4 (2022), 316