Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2019, Volume 22, Number 4, Pages 415–436
DOI: https://doi.org/10.15372/SJNM20190403
(Mi sjvm723)
 

This article is cited in 2 scientific papers (total in 2 papers)

The Walrasian equilibrium and centralized distributed optimization in terms of modern convex optimization methods on the example of resource allocation problem

E. A. Vorontsovaab, A. V. Gasnikovcde, A. S. Ivanovac, E. A. Nurminskya

a Far Eastern Federal University, ul. Sukhanova 8, Vladivostok, 690091 Russia
b Universite de Grenoble-Alpes, Ave. Central, 621, Saint-Martin-d'Heres, 38400, France
c Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow Region, 141700 Russia
d Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetnyi per. 19, build. 1, Moscow, 127051 Russia
e Caucasus Mathematical Center, Adyghe State University, ul. Pervomayskaya 208, Maykop, Republic of Adygea, 385000 Russia
Full-text PDF (849 kB) Citations (2)
References:
Abstract: We consider the resource allocation problem and its numerical solution. The following is demonstrated: 1) the Walrasian price-adjustment mechanism for determining the equilibrium; 2) the decentralized role of the prices; 3) Slater’s method for price restrictions (dual Lagrange multipliers); 4) a new mechanism for determining equilibrium prices, in which prices are fully controlled not by Center (Government), but by economic agents — nodes (factories). In the economic literature, only the convergence of the methods considered is proved. In contrast, this paper provides an accurate analysis of the convergence rate of the described procedures for determining the equilibrium. The analysis is based on the primal-dual nature of the algorithms proposed. More precisely, in this paper, we propose the economic interpretation of the following numerical primal-dual methods of the convex optimization: dichotomy and subgradient projection method.
Key words: Walrasian equilibrium, decentralized pricing, primal-dual method, subgradient method, Slater condition.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-03071_мк
Ministry of Education and Science of the Russian Federation МД-1320.2018.1
This work was supported by the Russian Foundation for Basic Research, grant no. 18-29-03071, and by the Council for Grants (under RF President), grant no. MD-1320.2018.1.
Received: 09.07.2018
Revised: 31.10.2018
Accepted: 25.07.2019
English version:
Numerical Analysis and Applications, 2019, Volume 12, Issue 4, Pages 338–358
DOI: https://doi.org/10.1134/S1995423919040037
Bibliographic databases:
Document Type: Article
UDC: 519.86
Language: Russian
Citation: E. A. Vorontsova, A. V. Gasnikov, A. S. Ivanova, E. A. Nurminsky, “The Walrasian equilibrium and centralized distributed optimization in terms of modern convex optimization methods on the example of resource allocation problem”, Sib. Zh. Vychisl. Mat., 22:4 (2019), 415–436; Num. Anal. Appl., 12:4 (2019), 338–358
Citation in format AMSBIB
\Bibitem{VorGasIva19}
\by E.~A.~Vorontsova, A.~V.~Gasnikov, A.~S.~Ivanova, E.~A.~Nurminsky
\paper The Walrasian equilibrium and centralized distributed optimization in terms of modern convex optimization methods on the example of resource allocation problem
\jour Sib. Zh. Vychisl. Mat.
\yr 2019
\vol 22
\issue 4
\pages 415--436
\mathnet{http://mi.mathnet.ru/sjvm723}
\crossref{https://doi.org/10.15372/SJNM20190403}
\transl
\jour Num. Anal. Appl.
\yr 2019
\vol 12
\issue 4
\pages 338--358
\crossref{https://doi.org/10.1134/S1995423919040037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000513714900003}
Linking options:
  • https://www.mathnet.ru/eng/sjvm723
  • https://www.mathnet.ru/eng/sjvm/v22/i4/p415
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :89
    References:36
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024