Abstract:
Two algorithms for an effective calculation of the Bessel function are presented: a fast algorithm with an increasing accuracy of computation and a computational algorithm for the case of a large argument of the Bessel function.
Key words:
Bessel functions, fast algorithms, computational complexity, FEE method, large argument, efficient calculation.
Citation:
E. A. Karatsuba, “On computation of the Bessel function by summing up the series”, Sib. Zh. Vychisl. Mat., 22:4 (2019), 453–472; Num. Anal. Appl., 12:4 (2019), 372–387
\Bibitem{Kar19}
\by E.~A.~Karatsuba
\paper On computation of the Bessel function by summing up the series
\jour Sib. Zh. Vychisl. Mat.
\yr 2019
\vol 22
\issue 4
\pages 453--472
\mathnet{http://mi.mathnet.ru/sjvm725}
\crossref{https://doi.org/10.15372/SJNM20190405}
\transl
\jour Num. Anal. Appl.
\yr 2019
\vol 12
\issue 4
\pages 372--387
\crossref{https://doi.org/10.1134/S1995423919040050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000513714900005}
Linking options:
https://www.mathnet.ru/eng/sjvm725
https://www.mathnet.ru/eng/sjvm/v22/i4/p453
This publication is cited in the following 8 articles:
Jack C. Straton, “Summed Series Involving 1F2 Hypergeometric Functions”, Mathematics, 12:24 (2024), 4016
E. A. Karatsuba, “On the Computational Complexity of Compressed Power Series”, Math. Notes, 114:1 (2023), 92–98
Meng Jiang, Chibuzo Joseph Nnonyelu, Jan Lundgren, Göran Thungström, Mårten Sjöström, “A Coherent Wideband Acoustic Source Localization Using a Uniform Circular Array”, Sensors, 23:11 (2023), 5061
E. A. Karatsuba, “A fast algorithm for computing the digamma function”, Autom. Remote Control, 83:10 (2022), 1576–1589
E. A. Karatsuba, “Fast evaluation algorithms for elementary algebraic and inverse functions using the FEE method”, Problems Inform. Transmission, 58:3 (2022), 284–296
Luca Guido MOLİNARİ, “A note on trigonometric approximations of Bessel functions of the first kind, and trigonometric power sums”, Fundamental Journal of Mathematics and Applications, 5:4 (2022), 266
S. Silva, H. , T. Almeida, D. B. , L. Queiroz, W. J. , E. Fonseca, I. , R. Oliveira, A. S. , Madeiro, F., “Outage probability of the product of two beaulieu-xie, eta-mu, kappa-mu, or alpha-mu random variables”, IEEE Antennas Wirel. Propag. Lett., 19:12 (2020), 2182–2186