Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2017, Volume 20, Number 4, Pages 439–444
DOI: https://doi.org/10.15372/SJNM20170407
(Mi sjvm662)
 

A description of pairs of the quasi-commuting Toeplitz and Hankel matrices

V. N. Chugunova, Kh. D. Ikramovb

a Institute of Numerical Mathematics, Russian Academy of Sciences, 8 Gubkina str., Moscow, 119333, Russia
b Lomonosov Moscow State University, GSP-1 Leninskie Gory, Moscow, 119991, Russia
References:
Abstract: We say that the square matrices $A$ and $B$ are of the same order quasi-commute if $AB=\sigma BA$ for some scalar $\sigma$. Classical relations of commutation and anti-commutation are particular cases of this definition. We give a complete description of pairs of the quasi-commuting Toeplitz and Hankel matrices for $\sigma\ne\pm1$.
Key words: Toeplitz matrix, Hankel matrix, $\phi$-circulant, quasi-commuting matrices.
Funding agency Grant number
Russian Science Foundation 14-11-00806
Received: 27.02.2017
Revised: 19.04.2017
English version:
Numerical Analysis and Applications, 2017, Volume 10, Issue 4, Pages 358–361
DOI: https://doi.org/10.1134/S1995423917040073
Bibliographic databases:
Document Type: Article
UDC: 512.643
Language: Russian
Citation: V. N. Chugunov, Kh. D. Ikramov, “A description of pairs of the quasi-commuting Toeplitz and Hankel matrices”, Sib. Zh. Vychisl. Mat., 20:4 (2017), 439–444; Num. Anal. Appl., 10:4 (2017), 358–361
Citation in format AMSBIB
\Bibitem{ChuIkr17}
\by V.~N.~Chugunov, Kh.~D.~Ikramov
\paper A description of pairs of the quasi-commuting Toeplitz and Hankel matrices
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 4
\pages 439--444
\mathnet{http://mi.mathnet.ru/sjvm662}
\crossref{https://doi.org/10.15372/SJNM20170407}
\elib{https://elibrary.ru/item.asp?id=30564540}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 4
\pages 358--361
\crossref{https://doi.org/10.1134/S1995423917040073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000426352400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042720910}
Linking options:
  • https://www.mathnet.ru/eng/sjvm662
  • https://www.mathnet.ru/eng/sjvm/v20/i4/p439
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:214
    Full-text PDF :40
    References:45
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024