|
A description of pairs of the quasi-commuting Toeplitz and Hankel matrices
V. N. Chugunova, Kh. D. Ikramovb a Institute of Numerical Mathematics, Russian Academy of Sciences, 8 Gubkina str., Moscow, 119333, Russia
b Lomonosov Moscow State University, GSP-1 Leninskie Gory, Moscow, 119991, Russia
Abstract:
We say that the square matrices $A$ and $B$ are of the same order quasi-commute if $AB=\sigma BA$ for some scalar $\sigma$. Classical relations of commutation and anti-commutation are particular cases of this definition. We give a complete description of pairs of the quasi-commuting Toeplitz and Hankel matrices for $\sigma\ne\pm1$.
Key words:
Toeplitz matrix, Hankel matrix, $\phi$-circulant, quasi-commuting matrices.
Received: 27.02.2017 Revised: 19.04.2017
Citation:
V. N. Chugunov, Kh. D. Ikramov, “A description of pairs of the quasi-commuting Toeplitz and Hankel matrices”, Sib. Zh. Vychisl. Mat., 20:4 (2017), 439–444; Num. Anal. Appl., 10:4 (2017), 358–361
Linking options:
https://www.mathnet.ru/eng/sjvm662 https://www.mathnet.ru/eng/sjvm/v20/i4/p439
|
Statistics & downloads: |
Abstract page: | 214 | Full-text PDF : | 40 | References: | 45 | First page: | 8 |
|