Abstract:
In this paper we investigate the two-velocity stationary hydrodynamics system with a single pressure and inhomogeneous divergent and boundary conditions for the two velocities. This system is overdetermined. By replacing the unknown functions, the problem is reduced to a homogeneous one. The solution of the resulting system is reduced to the consecutive solutions of the two boundary value problems: the Stokes problem for a single velocity and pressure, and overdetermined system for the other velocity. We present the generalized statements of these problems and their discrete approximation using the finite element method. To solve the overdetermined problem we apply a version of the regularization methods.
Citation:
M. V. Urev, Kh. Kh. Imomnazarov, Jian-Gang Tang, “A boundary value problem for one overdetermined stationary system emerging in the two-velocity hydrodynamics”, Sib. Zh. Vychisl. Mat., 20:4 (2017), 425–437; Num. Anal. Appl., 10:4 (2017), 347–357
\Bibitem{UreImoTan17}
\by M.~V.~Urev, Kh.~Kh.~Imomnazarov, Jian-Gang~Tang
\paper A boundary value problem for one overdetermined stationary system emerging in the two-velocity hydrodynamics
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 4
\pages 425--437
\mathnet{http://mi.mathnet.ru/sjvm661}
\crossref{https://doi.org/10.15372/SJNM20170406}
\elib{https://elibrary.ru/item.asp?id=30564539}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 4
\pages 347--357
\crossref{https://doi.org/10.1134/S1995423917040061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000426352400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042700920}
Linking options:
https://www.mathnet.ru/eng/sjvm661
https://www.mathnet.ru/eng/sjvm/v20/i4/p425
This publication is cited in the following 7 articles:
M. Urev, R. Bahramov, Sh. Imomnazarov, I. Iskandarov, “External Boundary Value Problem for One Overdetermined System Arising in Two-Velocity Hydrodynamics”, J Math Sci, 284:2 (2024), 279
B. Kh. Imomnazarov, Sh. Kh. Imomnazarov, M. M. Mamatkulov, B. B. Khudainazarov, “Fundamentalnoe reshenie dlya statsionarnogo uravneniya dvukhskorostnoi
gidrodinamiki s ravnovesiem faz po davleniyu v dissipativnom priblizhenii”, Sib. zhurn. industr. matem., 25:3 (2022), 33–40
B. Kh. Imomnazarov, Sh. Kh. Imomnazarov, M. M. Mamatqulov, B. B. Khudainazarov, “The Fundamental Solution of the Steady-State Two-Velocity Hydrodynamics Equation with Phase Equilibrium Pressure in the Dissipative Approximation”, J. Appl. Ind. Math., 16:3 (2022), 403
Kh. Kh. Imomnazarov, Sh. Kh. Imomnazarov, M. V. Urev, R. Kh. Bakhramov, “Reshenie odnoi pereopredelennoi statsionarnoi sistemy tipa Stoksa v v poluprostranstve”, Sib. zhurn. industr. matem., 24:4 (2021), 54–63
Kh. Kh. Imomnazarov, Sh. Kh. Imomnazarov, M. V. Urev, R. Kh. Bakhromov, “Solution of an Overdetermined Stationary Stokes-Type System in Half-Space”, J. Appl. Ind. Math., 15:4 (2021), 609
Sarvar Kuyliev, Kholmatzhon Imomnazarov, Ilham Iskandarov, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 070006
M. V. Urev, Sh. Kh. Imomnazarov, “Klassicheskoe reshenie odnoi pereopredelennoi statsionarnoi sistemy, voznikayuschei v dvukhskorostnoi gidrodinamike”, Sib. elektron. matem. izv., 15 (2018), 1621–1629