Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2017, Volume 20, Number 2, Pages 157–168
DOI: https://doi.org/10.15372/SJNM20170204
(Mi sjvm643)
 

This article is cited in 4 scientific papers (total in 4 papers)

Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency

J. P. Jaiswalabc

a Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal, M.P., 462051, India
b Faculty of Science, Barkatullah University, Bhopal, M.P., 462026, India
c Regional Institute of Education, Bhopal, M.P., 462013, India
Full-text PDF (575 kB) Citations (4)
References:
Abstract: The present paper is concerned with the study of semilocal convergence of a fifth-order method for solving nonlinear equations in Banach spaces under mild conditions. An existence and uniqueness theorem is proved and followed by error estimates. The computational superiority of the considered scheme over the identical order methods is also examined, which shows the efficiency of the present scheme from a computational point of view. Lastly, an application of the theoretical development is made in a nonlinear integral equation.
Key words: nonlinear equation, Banach space, weak condition, semilocal convergence, error bound.
Received: 03.10.2016
English version:
Numerical Analysis and Applications, 2017, Volume 10, Issue 2, Pages 129–139
DOI: https://doi.org/10.1134/S1995423917020045
Bibliographic databases:
Document Type: Article
MSC: 65H10, 65J15
Language: Russian
Citation: J. P. Jaiswal, “Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency”, Sib. Zh. Vychisl. Mat., 20:2 (2017), 157–168; Num. Anal. Appl., 10:2 (2017), 129–139
Citation in format AMSBIB
\Bibitem{Jai17}
\by J.~P.~Jaiswal
\paper Analysis of semilocal convergence in Banach spaces under relaxed condition and computational efficiency
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 2
\pages 157--168
\mathnet{http://mi.mathnet.ru/sjvm643}
\crossref{https://doi.org/10.15372/SJNM20170204}
\elib{https://elibrary.ru/item.asp?id=29160408}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 2
\pages 129--139
\crossref{https://doi.org/10.1134/S1995423917020045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000405833000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020195366}
Linking options:
  • https://www.mathnet.ru/eng/sjvm643
  • https://www.mathnet.ru/eng/sjvm/v20/i2/p157
  • This publication is cited in the following 4 articles:
    1. J. P. Jaiswal, “Analyzing the Semilocal Convergence of a Fourth-Order Newton-Type Scheme with Novel Majorant and Average Lipschitz Conditions”, Numer. Analys. Appl., 17:1 (2024), 8  crossref
    2. I. K. Argyros, S. George, C. Argyros, “A ball comparison between extended modified Jarratt methods under the same set of conditions for solving equations and systems of equations”, Probl. anal. Issues Anal., 11(29):1 (2022), 32–44  mathnet  crossref  mathscinet
    3. Samundra REGMİ, Ioannis K. ARGYROS, Santhosh GEORGE, Christopher ARGYROS, “An extended radius of convergence comparison between two sixth order methods under general continuity for solving equations”, Advances in the Theory of Nonlinear Analysis and its Application, 6:3 (2022), 310  crossref
    4. J. R. Sharma, D. Kumar, “A fast and efficient composite Newton-Chebyshev method for systems of nonlinear equations”, J. Complex., 49 (2018), 56–73  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :30
    References:36
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025