Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2017, Volume 20, Number 2, Pages 145–155
DOI: https://doi.org/10.15372/SJNM20170203
(Mi sjvm642)
 

This article is cited in 1 scientific paper (total in 1 paper)

On an approach to modeling wells

K. V. Voroninab, A. V. Grigorievac, Yu. M. Laevskyab

a Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6 Acad. Lavrentiev avenue, Novosibirsk, 630090, Russia
b Novosibirsk State University, 2 Pirogova str., Novosibirsk, 630090, Russia
c North-Eastern Federal University, 58 Belinsky str., Yakutsk, Republic of Sakha (Yakutia), 677027, Russia
References:
Abstract: This paper deals with a numerical study of the diffusion problem in the presence of wells, at which integral boundary conditions are used. It is shown that the method proposed earlier is fully efficient and offers certain advantages as compared with the direct modeling of wells based on the finite element method. The results of calculations for the two wells are presented.
Key words: wells, mixed formulation, mixed finite element method, error estimate.
Funding agency Grant number
Russian Science Foundation 15-11-10024
Received: 06.09.2016
Revised: 10.10.2016
English version:
Numerical Analysis and Applications, 2017, Volume 10, Issue 2, Pages 120–128
DOI: https://doi.org/10.1134/S1995423917020033
Bibliographic databases:
Document Type: Article
UDC: 519.632
Language: Russian
Citation: K. V. Voronin, A. V. Grigoriev, Yu. M. Laevsky, “On an approach to modeling wells”, Sib. Zh. Vychisl. Mat., 20:2 (2017), 145–155; Num. Anal. Appl., 10:2 (2017), 120–128
Citation in format AMSBIB
\Bibitem{VorGriLae17}
\by K.~V.~Voronin, A.~V.~Grigoriev, Yu.~M.~Laevsky
\paper On an approach to modeling wells
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 2
\pages 145--155
\mathnet{http://mi.mathnet.ru/sjvm642}
\crossref{https://doi.org/10.15372/SJNM20170203}
\elib{https://elibrary.ru/item.asp?id=29160407}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 2
\pages 120--128
\crossref{https://doi.org/10.1134/S1995423917020033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000405833000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020203495}
Linking options:
  • https://www.mathnet.ru/eng/sjvm642
  • https://www.mathnet.ru/eng/sjvm/v20/i2/p145
  • This publication is cited in the following 1 articles:
    1. Yu. M. Laevsky, I. A. Kremer, M. I. Ivanov, “On Wells Modeling in Filtration Problems”, Sib. Electron. Math. Rep., 16 (2019), 1868–1884  mathnet  crossref  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025