Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2017, Volume 20, Number 2, Pages 169–180
DOI: https://doi.org/10.15372/SJNM20170205
(Mi sjvm644)
 

This article is cited in 3 scientific papers (total in 3 papers)

A parallel algorithm of the multivariant evolutionary synthesis of nonlinear models

O. G. Monakhov, E. A. Monakhova

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6 Acad. Lavrentiev avenue, Novosibirsk, 630090, Russia
Full-text PDF (716 kB) Citations (3)
References:
Abstract: A parallel algorithm for solving the problem of constructing of nonlinear models (mathematical expressions, functions, algorithms, programs) based on given experimental data, a set of variables, basic functions and operations is proposed. The proposed algorithm of the multivariant evolutionary synthesis of nonlinear models has a linear representation of the chromosome, the modular operations in decoding the genotype to the phenotype for interpreting a chromosome as a sequence of instructions, the multivariant method for presenting a multiplicity of models (expressions) using a single chromosome. A comparison of the sequential version of the algorithm with a standard algorithm of genetic programming and the algorithm of the Cartesian Genetic Programming offers advantage of the algorithm proposed both in the time of obtaining a solution (by about an order of magnitude in most cases), and in the probability of finding a given function (model). In the experiments on the parallel supercomputer systems, estimates of the efficiency of the proposed parallel algorithm have been obtained showing linear acceleration and scalability.
Key words: parallel multivariant evolutionary synthesis, genetic algorithm, genetic programming, Cartesian genetic programming, nonlinear models.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00031
Received: 19.09.2016
Revised: 20.10.2016
English version:
Numerical Analysis and Applications, 2017, Volume 10, Issue 2, Pages 140–148
DOI: https://doi.org/10.1134/S1995423917020057
Bibliographic databases:
Document Type: Article
UDC: 519.7+519.8
Language: Russian
Citation: O. G. Monakhov, E. A. Monakhova, “A parallel algorithm of the multivariant evolutionary synthesis of nonlinear models”, Sib. Zh. Vychisl. Mat., 20:2 (2017), 169–180; Num. Anal. Appl., 10:2 (2017), 140–148
Citation in format AMSBIB
\Bibitem{MonMon17}
\by O.~G.~Monakhov, E.~A.~Monakhova
\paper A parallel algorithm of the multivariant evolutionary synthesis of nonlinear models
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 2
\pages 169--180
\mathnet{http://mi.mathnet.ru/sjvm644}
\crossref{https://doi.org/10.15372/SJNM20170205}
\elib{https://elibrary.ru/item.asp?id=29160409}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 2
\pages 140--148
\crossref{https://doi.org/10.1134/S1995423917020057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000405833000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020223834}
Linking options:
  • https://www.mathnet.ru/eng/sjvm644
  • https://www.mathnet.ru/eng/sjvm/v20/i2/p169
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :130
    References:42
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024