Abstract:
A problem of the Subbotin parabolic spline-interpolation of functions with large gradients in the boundary layer is considered. In the case of a uniform grid it has been proved and in the case of the Shishkin grid it has been experimentally shown that with a parabolic spline-interpolation of functions with large gradients the error in the exponential boundary layer can unrestrictedly increase with a fixed number of grid nodes. A modified parabolic spline has been constructed. Estimates of the interpolation error of the constructed spline don't depend from a small parameter.
Citation:
I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “About the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer”, Sib. Zh. Vychisl. Mat., 20:2 (2017), 131–144; Num. Anal. Appl., 10:2 (2017), 108–119