Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2012, Volume 15, Number 1, Pages 45–54 (Mi sjvm457)  

This article is cited in 17 scientific papers (total in 17 papers)

Application of absorbing boundary conditions M-PML for numerical simulation of wave propagation in anisotropic media. Part II: Stability

M. N. Dmitrievab, V. V. Lisitsaa

a A. A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Novosibirsk
References:
Abstract: This paper deals with studies of the detailed properties of absorbing boundary conditions M-PML (Multiaxial Perfectly Matched Layer) that arise when a computational domain is limited. These conditions are stable for any type of anisotropy with a correct choice of a stabilization parameter. In the first part of this paper [3], the authors show a linear dependence of the reflectivity on the stabilization parameter. Based on this study, the problem of finding the optimal stabilizing parameter, which provides stability and minimal reflection has been formulated. In this paper, we provide a necessary stability condition of M-PML, which allows limiting the lower value of the stabilizing parameter. It is shown that this criterion is not sufficient.
Key words: anisotropy, reflectionless boundary conditions, perfectly matched layer, elastic wave equations.
Received: 17.12.2010
Revised: 26.01.2011
English version:
Numerical Analysis and Applications, 2012, Volume 5, Issue 1, Pages 36–44
DOI: https://doi.org/10.1134/S1995423912010041
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: M. N. Dmitriev, V. V. Lisitsa, “Application of absorbing boundary conditions M-PML for numerical simulation of wave propagation in anisotropic media. Part II: Stability”, Sib. Zh. Vychisl. Mat., 15:1 (2012), 45–54; Num. Anal. Appl., 5:1 (2012), 36–44
Citation in format AMSBIB
\Bibitem{DmiLis12}
\by M.~N.~Dmitriev, V.~V.~Lisitsa
\paper Application of absorbing boundary conditions M-PML for numerical simulation of wave propagation in anisotropic media. Part~II: Stability
\jour Sib. Zh. Vychisl. Mat.
\yr 2012
\vol 15
\issue 1
\pages 45--54
\mathnet{http://mi.mathnet.ru/sjvm457}
\elib{https://elibrary.ru/item.asp?id=17978978}
\transl
\jour Num. Anal. Appl.
\yr 2012
\vol 5
\issue 1
\pages 36--44
\crossref{https://doi.org/10.1134/S1995423912010041}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857806782}
Linking options:
  • https://www.mathnet.ru/eng/sjvm457
  • https://www.mathnet.ru/eng/sjvm/v15/i1/p45
  • This publication is cited in the following 17 articles:
    1. Hanming Chen, Wenze Cheng, Lingqian Wang, Hui Zhou, “Efficient Implementation of CFS-CPML in FDTD Solutions of Second-Order Seismic Wave Equations”, IEEE Trans. Geosci. Remote Sensing, 62 (2024), 1  crossref
    2. Wei Zhong, Tielin Liu, “An Implementation Method of the Complex Frequency-Shifted Uniaxial/Multi-Axial PML Technique for Viscoelastic Seismic Wave Propagation”, Journal of Earthquake Engineering, 28:4 (2024), 885  crossref
    3. Pled F. Desceliers Ch., “Review and Recent Developments on the Perfectly Matched Layer (Pml) Method For the Numerical Modeling and Simulation of Elastic Wave Propagation in Unbounded Domains”, Arch. Comput. Method Eng., 29:1 (2022), 471–518  crossref  mathscinet  isi  scopus
    4. Yiwen He, Ting Wu, Yu-Po Wong, Temesgen Bailie Workie, Jingfu Bao, Ken-ya Hashimoto, 2022 IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM), 2022, 74  crossref
    5. Yingjie Gao, Meng-Hua Zhu, “Application of the Reflectionless Discrete Perfectly Matched Layer for Acoustic Wave Simulation”, Front. Earth Sci., 10 (2022)  crossref
    6. Poursartip B. Fathi A. Tassoulas J.L., “Large-Scale Simulation of Seismic Wave Motion: a Review”, Soil Dyn. Earthq. Eng., 129 (2020), 105909  crossref  isi  scopus
    7. Lisitsa V. Kolyukhin D. Tcheverda V., “Statistical Analysis of Free-Surface Variability'S Impact on Seismic Wavefield”, Soil Dyn. Earthq. Eng., 116 (2019), 86–95  crossref  isi  scopus
    8. Koskela J. Plessky V. Willemsen B. Turner P. Hammond B. Fenzi N., “Hierarchical Cascading Algorithm For 2-D Fem Simulation of Finite Saw Devices”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65:10 (2018), 1933–1942  crossref  isi  scopus
    9. Koskela J. Plessky V., 2018 IEEE International Ultrasonics Symposium (Ius), IEEE International Ultrasonics Symposium, IEEE, 2018  isi
    10. Gao K. Huang L., “Optimal Damping Profile Ratios For Stabilization of Perfectly Matched Layers in General Anisotropic Media”, Geophysics, 83:1 (2018), T15–T30  crossref  isi  scopus
    11. Julius Koskela, Victor Plessky, 2018 IEEE International Ultrasonics Symposium (IUS), 2018, 1  crossref
    12. P. Yang, Zh.-Ch. Li, B.-L. Gu, “Pure quasi-P wave forward modeling method in TI media and its application to RTM”, Chinese J. Geophys.-Chinese Ed., 60:11 (2017), 4447–4467  crossref  isi  scopus
    13. D. Wei, X. Zhao, J. Wang, J.-Sh. Wang, “Application of improved recursive integral perfect matched layer method on ultrasonic testing”, Eng. Lett., 25:3 (2017), 228–233  isi
    14. A. Fathi, B. Poursartip, L. F. Kallivokas, “Time-domain hybrid formulations for wave simulations in three-dimensional PML-truncated heterogeneous media”, Int. J. Numer. Methods Eng., 101:3 (2015), 165–198  crossref  mathscinet  zmath  isi  elib  scopus
    15. P. Ping, Yu. Zhang, Y. Xu, “A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations”, J. Appl. Geophys., 101 (2014), 124–135  crossref  isi  scopus
    16. Y.-S. Liu, J.-W. Teng, S.-L. Liu, T. Xu, “Explicit finite element method with triangle meshes stored by sparse format and its perfectly matched layers absorbing boundary condition”, Chinese J. Geophys.-Chinese Ed., 56:9 (2013), 3085–3099  crossref  isi  scopus
    17. V. Lisitsa, V. Tcheverda, D. Vishnevsky, “Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite-difference schemes”, Comput. Geosci., 16:4 (2012), 1135–1152  crossref  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:504
    Full-text PDF :139
    References:80
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025