Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2011, Volume 14, Number 4, Pages 333–344 (Mi sjvm446)  

This article is cited in 22 scientific papers (total in 22 papers)

Application of M-PML absorbing boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part I: reflectivity

M. N. Dmitrievab, V. V. Lisitsaa

a A. A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University, Novosibirsk
References:
Abstract: This paper presents a detailed study of the construction of reflectionless boundary conditions for anisotropic elastic problems. A Multiaxial Perfectly Matched Layer (M-PML) approach is considered. With a proper stabilization parameter, the M-PML ensures solution stability for arbitrary anisotropic media. It is proved that this M-PML modification is not perfectly matched, and the reflectivity the M-PML exceeds that of the standard PML. Moreover, the reflection coefficient linearly depends on the stabilization parameter. A problem of constructing an optimal stabilization parameter is formulated as follows: find a minimal possible parameter that ensures stability. This problem is considered in a second paper on this work.
Key words: anisotropy, reflectionless boundary conditions, perfectly matched layer, elastic wave equations.
Received: 17.12.2010
Revised: 26.01.2011
English version:
Numerical Analysis and Applications, 2011, Volume 4, Issue 4, Pages 271–280
DOI: https://doi.org/10.1134/S199542391104001X
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: M. N. Dmitriev, V. V. Lisitsa, “Application of M-PML absorbing boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part I: reflectivity”, Sib. Zh. Vychisl. Mat., 14:4 (2011), 333–344; Num. Anal. Appl., 4:4 (2011), 271–280
Citation in format AMSBIB
\Bibitem{DmiLis11}
\by M.~N.~Dmitriev, V.~V.~Lisitsa
\paper Application of M-PML absorbing boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part~I: reflectivity
\jour Sib. Zh. Vychisl. Mat.
\yr 2011
\vol 14
\issue 4
\pages 333--344
\mathnet{http://mi.mathnet.ru/sjvm446}
\transl
\jour Num. Anal. Appl.
\yr 2011
\vol 4
\issue 4
\pages 271--280
\crossref{https://doi.org/10.1134/S199542391104001X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84155189741}
Linking options:
  • https://www.mathnet.ru/eng/sjvm446
  • https://www.mathnet.ru/eng/sjvm/v14/i4/p333
  • This publication is cited in the following 22 articles:
    1. Wei Zhong, Tielin Liu, “An Implementation Method of the Complex Frequency-Shifted Uniaxial/Multi-Axial PML Technique for Viscoelastic Seismic Wave Propagation”, Journal of Earthquake Engineering, 28:4 (2024), 885  crossref
    2. Te-chao Zhang, Xiao-shan Cao, Si-yuan Chen, “Gradient viscoelastic virtual boundary for numerical simulation of wave propagation”, Computers & Mathematics with Applications, 147 (2023), 202  crossref
    3. Zhinan Xie, Yonglu Zheng, Paul Cristini, Xubin Zhang, “Multi-axial unsplit frequency-shifted perfectly matched layer for displacement-based anisotropic wave simulation in infinite domain”, Earthq. Eng. Eng. Vib., 22:2 (2023), 407  crossref
    4. Wang Yu., Bai M., Yang L., Zhao X., Saad O.M., Chen Ya., “An Unsplit Cfs-Pml Scheme For the Second-Order Wave Equation With Its Application in Fractional Viscoacoustic Simulation”, IEEE Trans. Geosci. Remote Sensing, 60 (2022)  crossref  isi  scopus
    5. Pled F., Desceliers Ch., “Review and Recent Developments on the Perfectly Matched Layer (Pml) Method For the Numerical Modeling and Simulation of Elastic Wave Propagation in Unbounded Domains”, Arch. Comput. Method Eng., 29:1 (2022), 471–518  crossref  mathscinet  isi  scopus
    6. Yingjie Gao, Meng-Hua Zhu, “Application of the Reflectionless Discrete Perfectly Matched Layer for Acoustic Wave Simulation”, Front. Earth Sci., 10 (2022)  crossref
    7. Yiwen He, Ting Wu, Yu-Po Wong, Temesgen Bailie Workie, Jingfu Bao, Ken-ya Hashimoto, 2022 IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM), 2022, 74  crossref
    8. Poursartip B., Fathi A., Tassoulas J.L., “Large-Scale Simulation of Seismic Wave Motion: a Review”, Soil Dyn. Earthq. Eng., 129 (2020), 105909  crossref  isi  scopus
    9. Zhao Zh., Chen J., “Complex Frequency-Shifted Multi-Axial Perfectly Matched Layer For Frequency-Domain Seismic Wavefield Simulation in Anisotropic Media”, Geophys. Prospect., 67:5 (2019), 1329–1344  crossref  isi  scopus
    10. Li J., Innanen K.A., Wang B., “A New Second Order Absorbing Boundary Layer Formulation For Anisotropic-Elastic Wavefield Simulation”, Pure Appl. Geophys., 176:4 (2019), 1717–1730  crossref  isi  scopus
    11. Lisitsa V., Kolyukhin D., Tcheverda V., “Statistical Analysis of Free-Surface Variability'S Impact on Seismic Wavefield”, Soil Dyn. Earthq. Eng., 116 (2019), 86–95  crossref  isi  scopus
    12. Koskela J., Plessky V., Willemsen B., Turner P., Hammond B., Fenzi N., “Hierarchical Cascading Algorithm For 2-D Fem Simulation of Finite Saw Devices”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65:10 (2018), 1933–1942  crossref  isi  scopus
    13. Koskela J., Plessky V., 2018 IEEE International Ultrasonics Symposium (Ius), IEEE International Ultrasonics Symposium, IEEE, 2018  isi
    14. Gao K., Huang L., “Optimal Damping Profile Ratios For Stabilization of Perfectly Matched Layers in General Anisotropic Media”, Geophysics, 83:1 (2018), T15–T30  crossref  isi  scopus
    15. Julius Koskela, Victor Plessky, 2018 IEEE International Ultrasonics Symposium (IUS), 2018, 1  crossref
    16. Fathi A., Poursartip B., Kallivokas L.F., “Time-Domain Hybrid Formulations For Wave Simulations in Three-Dimensional Pml-Truncated Heterogeneous Media”, Int. J. Numer. Methods Eng., 101:3 (2015), 165–198  crossref  mathscinet  zmath  isi  elib  scopus
    17. Ping P. Zhang Yu. Xu Y., “A Multiaxial Perfectly Matched Layer (M-Pml) for the Long-Time Simulation of Elastic Wave Propagation in the Second-Order Equations”, J. Appl. Geophys., 101 (2014), 124–135  crossref  isi  scopus
    18. Metivier L., Brossier R., Labbe S., Operto S., Virieux J., “a Robust Absorbing Layer Method For Anisotropic Seismic Wave Modeling”, J. Comput. Phys., 279 (2014), 218–240  crossref  mathscinet  zmath  isi  elib  scopus
    19. Tago J., Metivier L., Virieux J., “Smart Layers: a Simple and Robust Alternative To Pml Approaches For Elastodynamics”, Geophys. J. Int., 199:2 (2014), 700–706  crossref  isi  elib  scopus
    20. Liu You-Shan, Teng Ji-Wen, Liu Shao-Lin, Xu Tao, “Explicit Finite Element Method with Triangle Meshes Stored by Sparse Format and its Perfectly Matched Layers Absorbing Boundary Condition”, Chinese J. Geophys.-Chinese Ed., 56:9 (2013), 3085–3099  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:520
    Full-text PDF :159
    References:71
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025