Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 075, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.075
(Mi sigma858)
 

This article is cited in 6 scientific papers (total in 6 papers)

Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors

Mikhail B. Sheftela, Andrei A. Malykhb

a Department of Physics, Boğaziçi University 34342 Bebek, Istanbul, Turkey
b Department of Numerical Modelling, Russian State Hydrometeorlogical University, 98 Malookhtinsky Ave., 195196 St. Petersburg, Russia
Full-text PDF (439 kB) Citations (6)
References:
Abstract: We demonstrate how a combination of our recently developed methods of partner symmetries, symmetry reduction in group parameters and a new version of the group foliation method can produce noninvariant solutions of complex Monge–Ampère equation (CMA) and provide a lift from invariant solutions of CMA satisfying Boyer–Finley equation to non-invariant ones. Applying these methods, we obtain a new noninvariant solution of CMA and the corresponding Ricci-flat anti-self-dual Einstein–Kähler metric with Euclidean signature without Killing vectors, together with Riemannian curvature two-forms. There are no singularities of the metric and curvature in a bounded domain if we avoid very special choices of arbitrary functions of a single variable in our solution. This metric does not describe gravitational instantons because the curvature is not concentrated in a bounded domain.
Keywords: Monge–Ampère equation; Boyer–Finley equation; partner symmetries; symmetry reduction; non-invariant solutions; group foliation; anti-self-dual gravity; Ricci-flat metric.
Received: June 14, 2013; in final form November 19, 2013; Published online November 27, 2013
Bibliographic databases:
Document Type: Article
MSC: 35Q75; 83C15
Language: English
Citation: Mikhail B. Sheftel, Andrei A. Malykh, “Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors”, SIGMA, 9 (2013), 075, 21 pp.
Citation in format AMSBIB
\Bibitem{SheMal13}
\by Mikhail~B.~Sheftel, Andrei~A.~Malykh
\paper Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors
\jour SIGMA
\yr 2013
\vol 9
\papernumber 075
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma858}
\crossref{https://doi.org/10.3842/SIGMA.2013.075}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3141543}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327865200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888394317}
Linking options:
  • https://www.mathnet.ru/eng/sigma858
  • https://www.mathnet.ru/eng/sigma/v9/p75
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :50
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024