Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 074, 19 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.074
(Mi sigma857)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds

Anthony D. Blaom

22 Ridge Road, Waiheke Island, New Zealand
Full-text PDF (404 kB) Citations (3)
References:
Abstract: A linear connection on a Lie algebroid is called a Cartan connection if it is suitably compatible with the Lie algebroid structure. Here we show that a smooth connected manifold $M$ is locally homogeneous — i.e., admits an atlas of charts modeled on some homogeneous space $G/H$ — if and only if there exists a transitive Lie algebroid over $M$ admitting a flat Cartan connection that is ‘geometrically closed’. It is shown how the torsion and monodromy of the connection determine the particular form of $G/H$. Under an additional completeness hypothesis, local homogeneity becomes global homogeneity, up to cover.
Keywords: locally homogeneous; Lie algebroid; Cartan connection; completeness.
Received: May 8, 2013; in final form November 19, 2013; Published online November 26, 2013
Bibliographic databases:
Document Type: Article
MSC: 53C30; 53C15; 53C07
Language: English
Citation: Anthony D. Blaom, “The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds”, SIGMA, 9 (2013), 074, 19 pp.
Citation in format AMSBIB
\Bibitem{Bla13}
\by Anthony~D.~Blaom
\paper The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds
\jour SIGMA
\yr 2013
\vol 9
\papernumber 074
\totalpages 19
\mathnet{http://mi.mathnet.ru/sigma857}
\crossref{https://doi.org/10.3842/SIGMA.2013.074}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3141542}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327864900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888337541}
Linking options:
  • https://www.mathnet.ru/eng/sigma857
  • https://www.mathnet.ru/eng/sigma/v9/p74
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :54
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024