Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 076, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.076
(Mi sigma859)
 

Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian

Eduardo Matteia, Jon Linksb

a Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, Brazil
b School of Mathematics and Physics, The University of Queensland, 4072, Australia
References:
Abstract: We introduce a Hamiltonian for two interacting $\mathfrak{su}(2)$ spins. We use a mean-field analysis and exact Bethe ansatz results to investigate the ground-state properties of the system in the classical limit, defined as the limit of infinite spin (or highest weight). Complementary insights are provided through investigation of the energy gap, ground-state fidelity, and ground-state entanglement, which are numerically computed for particular parameter values. Despite the simplicity of the model, a rich array of ground-state features are uncovered. Finally, we discuss how this model may be seen as an analogue of the exactly solvable $p+ip$ pairing Hamiltonian.
Keywords: mean-field analysis; Bethe ansatz; quantum phase transition.
Received: July 23, 2013; in final form November 22, 2013; Published online November 30, 2013
Bibliographic databases:
Document Type: Article
MSC: 81R05; 17B80; 81R12
Language: English
Citation: Eduardo Mattei, Jon Links, “Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian”, SIGMA, 9 (2013), 076, 15 pp.
Citation in format AMSBIB
\Bibitem{MatLin13}
\by Eduardo~Mattei, Jon~Links
\paper Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian
\jour SIGMA
\yr 2013
\vol 9
\papernumber 076
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma859}
\crossref{https://doi.org/10.3842/SIGMA.2013.076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3141544}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327865500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888630912}
Linking options:
  • https://www.mathnet.ru/eng/sigma859
  • https://www.mathnet.ru/eng/sigma/v9/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :39
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024