Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 003, 5 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.003
(Mi sigma256)
 

Affine Poisson Groups and WZW Model

Ctirad Klimcík

Institute de mathématiques de Luminy, 163, Avenue de Luminy, 13288 Marseille, France
References:
Abstract: We give a detailed description of a dynamical system which enjoys a Poisson–Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the $q\to\infty$ limit of the $q$-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations.
Keywords: Poisson–Lie symmetry; WZW model.
Received: October 31, 2007; Published online January 11, 2008
Bibliographic databases:
Document Type: Article
MSC: 81T40
Language: English
Citation: Ctirad Klimcík, “Affine Poisson Groups and WZW Model”, SIGMA, 4 (2008), 003, 5 pp.
Citation in format AMSBIB
\Bibitem{Kli08}
\by Ctirad Klimc{\'\i}k
\paper Affine Poisson Groups and WZW Model
\jour SIGMA
\yr 2008
\vol 4
\papernumber 003
\totalpages 5
\mathnet{http://mi.mathnet.ru/sigma256}
\crossref{https://doi.org/10.3842/SIGMA.2008.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2369388}
\zmath{https://zbmath.org/?q=an:1133.81050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84912146277}
Linking options:
  • https://www.mathnet.ru/eng/sigma256
  • https://www.mathnet.ru/eng/sigma/v4/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :44
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024