Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 002, 57 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.002
(Mi sigma255)
 

This article is cited in 31 scientific papers (total in 31 papers)

$E$-Orbit Functions

Anatoliy U. Klimyka, Jiri Paterab

a Bogolyubov Institute for Theoretical Physics, 14-b Metrologichna Str., Kyiv 03680, Ukraine
b Centre de Recherches Mathématiques, Université de Montréal, C.P.6128-Centre ville, Montréal, H3C 3J7, Québec, Canada
References:
Abstract: We review and further develop the theory of $E$-orbit functions. They are functions on the Euclidean space $E_n$ obtained from the multivariate exponential function by symmetrization by means of an even part $W_e$ of a Weyl group $W$, corresponding to a Coxeter–Dynkin diagram. Properties of such functions are described. They are closely related to symmetric and antisymmetric orbit functions which are received from exponential functions by symmetrization and antisymmetrization procedure by means of a Weyl group $W$. The $E$-orbit functions, determined by integral parameters, are invariant with respect to even part $W^{\mathrm aff}_e$ of the affine Weyl group corresponding to $W$. The $E$-orbit functions determine a symmetrized Fourier transform, where these functions serve as a kernel of the transform. They also determine a transform on a finite set of points of the fundamental domain $F^e$ of the group $W^{\rm aff}_e$ (the discrete $E$-orbit function transform).
Keywords: $E$-orbit functions; orbits; products of orbits; symmetric orbit functions; $E$-orbit function transform; finite $E$-orbitfunction transform; finite Fourier transforms.
Received: December 20, 2007; Published online January 5, 2008
Bibliographic databases:
Document Type: Article
Language: English
Citation: Anatoliy U. Klimyk, Jiri Patera, “$E$-Orbit Functions”, SIGMA, 4 (2008), 002, 57 pp.
Citation in format AMSBIB
\Bibitem{KliPat08}
\by Anatoliy U.~Klimyk, Jiri Patera
\paper $E$-Orbit Functions
\jour SIGMA
\yr 2008
\vol 4
\papernumber 002
\totalpages 57
\mathnet{http://mi.mathnet.ru/sigma255}
\crossref{https://doi.org/10.3842/SIGMA.2008.002}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2369389}
\zmath{https://zbmath.org/?q=an:1139.33001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055191406}
Linking options:
  • https://www.mathnet.ru/eng/sigma255
  • https://www.mathnet.ru/eng/sigma/v4/p2
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :74
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024