Processing math: 100%
Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 032, 56 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.032
(Mi sigma1715)
 

This article is cited in 2 scientific papers (total in 2 papers)

An Introduction to Motivic Feynman Integrals

Claudia Rella

Section de Mathématiques, Université de Genève, Genève, CH-1211 Switzerland
References:
Abstract: This article gives a short step-by-step introduction to the representation of parametric Feynman integrals in scalar perturbative quantum field theory as periods of motives. The application of motivic Galois theory to the algebro-geometric and categorical structures underlying Feynman graphs is reviewed up to the current state of research. The example of primitive log-divergent Feynman graphs in scalar massless ϕ4 quantum field theory is analysed in detail.
Keywords: scattering amplitudes, Feynman diagrams, multiple zeta values, Hodge structures, periods of motives, Galois theory, Tannakian categories.
Funding agency Grant number
Italian Department of Education, Research and University 13474/19.09.2018 POR-Lazio-FSE/2014-2020
Swiss National Science Foundation NCCR 51NF40-141869
This work is partially supported by the Italian Department of Education, Research and University (Torno Subito 13474/19.09.2018 POR-Lazio-FSE/2014-2020) and the Swiss National Centre of Competence in Research SwissMAP (NCCR 51NF40-141869 The Mathematics of Physics).
Received: August 30, 2020; in final form March 3, 2021; Published online March 26, 2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Claudia Rella, “An Introduction to Motivic Feynman Integrals”, SIGMA, 17 (2021), 032, 56 pp.
Citation in format AMSBIB
\Bibitem{Rel21}
\by Claudia~Rella
\paper An Introduction to Motivic Feynman Integrals
\jour SIGMA
\yr 2021
\vol 17
\papernumber 032
\totalpages 56
\mathnet{http://mi.mathnet.ru/sigma1715}
\crossref{https://doi.org/10.3842/SIGMA.2021.032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000641901800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104367450}
Linking options:
  • https://www.mathnet.ru/eng/sigma1715
  • https://www.mathnet.ru/eng/sigma/v17/p32
  • This publication is cited in the following 2 articles:
    1. Philip Candelas, Xenia de la Ossa, Pyry Kuusela, Joseph McGovern, “Flux vacua and modularity for Z2 symmetric Calabi-Yau manifolds”, SciPost Phys., 15:4 (2023)  crossref
    2. Oliver Schnetz, Karen Yeats, “c2 Invariants of Hourglass Chains via Quadratic Denominator Reduction”, SIGMA, 17 (2021), 100, 26 pp.  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025