Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 033, 25 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.033
(Mi sigma1716)
 

This article is cited in 1 scientific paper (total in 1 paper)

Invariants of Surfaces in Three-Dimensional Affine Geometry

Örn Arnaldssona, Francis Valiquetteb

a Department of Mathematics, University of Iceland, Reykjavik, Ssn. 600169-2039, Iceland
b Department of Mathematics, Monmouth University, West Long Branch, NJ 07764, USA
Full-text PDF (446 kB) Citations (1)
References:
Abstract: Using the method of moving frames we analyze the algebra of differential invariants for surfaces in three-dimensional affine geometry. For elliptic, hyperbolic, and parabolic points, we show that if the algebra of differential invariants is non-trivial, then it is generically generated by a single invariant.
Keywords: affine group, differential invariants, moving frames.
Received: September 3, 2020; in final form March 21, 2021; Published online March 30, 2021
Bibliographic databases:
Document Type: Article
MSC: 22F05, 53A35, 53A55
Language: English
Citation: Örn Arnaldsson, Francis Valiquette, “Invariants of Surfaces in Three-Dimensional Affine Geometry”, SIGMA, 17 (2021), 033, 25 pp.
Citation in format AMSBIB
\Bibitem{ArnVal21}
\by \"Orn~Arnaldsson, Francis~Valiquette
\paper Invariants of Surfaces in Three-Dimensional Affine Geometry
\jour SIGMA
\yr 2021
\vol 17
\papernumber 033
\totalpages 25
\mathnet{http://mi.mathnet.ru/sigma1716}
\crossref{https://doi.org/10.3842/SIGMA.2021.033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000641902000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104032699}
Linking options:
  • https://www.mathnet.ru/eng/sigma1716
  • https://www.mathnet.ru/eng/sigma/v17/p33
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:71
    Full-text PDF :20
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024