Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2021, Volume 17, 031, 27 pp.
DOI: https://doi.org/10.3842/SIGMA.2021.031
(Mi sigma1714)
 

This article is cited in 2 scientific papers (total in 2 papers)

Representations of the Lie Superalgebra $\mathfrak{osp}(1|2n)$ with Polynomial Bases

Asmus K. Bisbo, Hendrik De Bie, Joris Van der Jeugt

Ghent University, B-9000 Gent, Belgium
Full-text PDF (518 kB) Citations (2)
References:
Abstract: We study a particular class of infinite-dimensional representations of $\mathfrak{osp}(1|2n)$. These representations $L_n(p)$ are characterized by a positive integer $p$, and are the lowest component in the $p$-fold tensor product of the metaplectic representation of $\mathfrak{osp}(1|2n)$. We construct a new polynomial basis for $L_n(p)$ arising from the embedding $\mathfrak{osp}(1|2np) \supset \mathfrak{osp}(1|2n)$. The basis vectors of $L_n(p)$ are labelled by semi-standard Young tableaux, and are expressed as Clifford algebra valued polynomials with integer coefficients in $np$ variables. Using combinatorial properties of these tableau vectors it is deduced that they form indeed a basis. The computation of matrix elements of a set of generators of $\mathfrak{osp}(1|2n)$ on these basis vectors requires further combinatorics, such as the action of a Young subgroup on the horizontal strips of the tableau.
Keywords: representation theory, Lie superalgebras, Young tableaux, Clifford analysis, parabosons.
Funding agency Grant number
Fonds Wetenschappelijk Onderzoek 30889451
The authors were supported by the EOS Research Project 30889451.
Received: June 30, 2020; in final form March 10, 2021; Published online March 25, 2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Asmus K. Bisbo, Hendrik De Bie, Joris Van der Jeugt, “Representations of the Lie Superalgebra $\mathfrak{osp}(1|2n)$ with Polynomial Bases”, SIGMA, 17 (2021), 031, 27 pp.
Citation in format AMSBIB
\Bibitem{BisDe Van21}
\by Asmus~K.~Bisbo, Hendrik~De Bie, Joris~Van der Jeugt
\paper Representations of the Lie Superalgebra $\mathfrak{osp}(1|2n)$ with Polynomial Bases
\jour SIGMA
\yr 2021
\vol 17
\papernumber 031
\totalpages 27
\mathnet{http://mi.mathnet.ru/sigma1714}
\crossref{https://doi.org/10.3842/SIGMA.2021.031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000641901700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104327342}
Linking options:
  • https://www.mathnet.ru/eng/sigma1714
  • https://www.mathnet.ru/eng/sigma/v17/p31
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025