Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2018, Volume 73, Issue 4, Pages 615–660
DOI: https://doi.org/10.1070/RM9829
(Mi rm9829)
 

This article is cited in 2 scientific papers (total in 2 papers)

New aspects of complexity theory for 3-manifolds

A. Yu. Vesninab, S. V. Matveevcd, E. A. Fominykhcd

a Tomsk State University
b S. L. Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c Chelyabinsk State University
d N. N. Krasovskii Institute of Mathematics and Mechanics of Russian Academy of Sciences
References:
Abstract: Recent developments in the theory of complexity for three-dimensional manifolds are reviewed, including results and methods that emerged over the last decade. Infinite families of closed orientable manifolds and hyperbolic manifolds with totally geodesic boundary are presented, and the exact values of the Matveev complexity are given for them. New methods for computing complexity are described, based on calculation of the Turaev–Viro invariants and hyperbolic volumes of 3-manifolds.
Bibliography: 89 titles.
Keywords: 3-manifolds, Matveev complexity, tetrahedral complexity, triangulations, spines.
Funding agency Grant number
Russian Science Foundation 16-11-10291
This research was supported by the Russian Science Foundation under project no. 16-11-10291.
Received: 09.04.2018
Russian version:
Uspekhi Matematicheskikh Nauk, 2018, Volume 73, Issue 4(442), Pages 53–102
DOI: https://doi.org/10.4213/rm9829
Bibliographic databases:
Document Type: Article
UDC: 515.162
MSC: 57M27
Language: English
Original paper language: Russian
Citation: A. Yu. Vesnin, S. V. Matveev, E. A. Fominykh, “New aspects of complexity theory for 3-manifolds”, Uspekhi Mat. Nauk, 73:4(442) (2018), 53–102; Russian Math. Surveys, 73:4 (2018), 615–660
Citation in format AMSBIB
\Bibitem{VesMatFom18}
\by A.~Yu.~Vesnin, S.~V.~Matveev, E.~A.~Fominykh
\paper New aspects of complexity theory for 3-manifolds
\jour Uspekhi Mat. Nauk
\yr 2018
\vol 73
\issue 4(442)
\pages 53--102
\mathnet{http://mi.mathnet.ru/rm9829}
\crossref{https://doi.org/10.4213/rm9829}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833508}
\zmath{https://zbmath.org/?q=an:1473.57058}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018RuMaS..73..615V}
\elib{https://elibrary.ru/item.asp?id=35276500}
\transl
\jour Russian Math. Surveys
\yr 2018
\vol 73
\issue 4
\pages 615--660
\crossref{https://doi.org/10.1070/RM9829}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448388200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055805397}
Linking options:
  • https://www.mathnet.ru/eng/rm9829
  • https://doi.org/10.1070/RM9829
  • https://www.mathnet.ru/eng/rm/v73/i4/p53
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:695
    Russian version PDF:128
    English version PDF:30
    References:74
    First page:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024