Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1979, Volume 34, Issue 5, Pages 149–234
DOI: https://doi.org/10.1070/RM1979v034n05ABEH003906
(Mi rm4122)
 

This article is cited in 54 scientific papers (total in 54 papers)

Some mathematical problems of statistical hydromechanics

M. I. Vishik, A. I. Komech, A. V. Fursikov
References:
Received: 10.04.1979
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: English
Original paper language: Russian
Citation: M. I. Vishik, A. I. Komech, A. V. Fursikov, “Some mathematical problems of statistical hydromechanics”, Russian Math. Surveys, 34:5 (1979), 149–234
Citation in format AMSBIB
\Bibitem{VisKomFur79}
\by M.~I.~Vishik, A.~I.~Komech, A.~V.~Fursikov
\paper Some mathematical problems of~statistical hydromechanics
\jour Russian Math. Surveys
\yr 1979
\vol 34
\issue 5
\pages 149--234
\mathnet{http://mi.mathnet.ru/eng/rm4122}
\crossref{https://doi.org/10.1070/RM1979v034n05ABEH003906}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=562801}
\zmath{https://zbmath.org/?q=an:0495.76036|0503.76045}
Linking options:
  • https://www.mathnet.ru/eng/rm4122
  • https://doi.org/10.1070/RM1979v034n05ABEH003906
  • https://www.mathnet.ru/eng/rm/v34/i5/p135
  • This publication is cited in the following 54 articles:
    1. T. Tachim Medjo, “Asymptotic log-Harnack inequality for the 3D stochastic globally modified Allen-Cahn-Navier-Stokes system with degenerate noise”, Journal of Mathematical Analysis and Applications, 547:1 (2025), 129293  crossref
    2. Muhammad Shoaib Arif, Wasfi Shatanawi, Yasir Nawaz, “Stochastic Analysis of electro-osmotic flow dynamics in porous media with energy dissipation”, International Journal of Thermofluids, 27 (2025), 101172  crossref
    3. Muhammad Shoaib Arif, Kamaleldin Abodayeh, Yasir Nawaz, “A two-stage computational approach for stochastic Darcy-forchheimer non-newtonian flows”, Front. Phys., 13 (2025)  crossref
    4. Yasir Nawaz, Muhammad Shoaib Arif, Amna Nazeer, Javeria Nawaz Abbasi, Kamaleldin Abodayeh, “A two‐stage reliable computational scheme for stochastic unsteady mixed convection flow of Casson nanofluid”, Numerical Methods in Fluids, 96:5 (2024), 719  crossref
    5. Muhammad Shoaib Arif, Kamaleldin Abodayeh, Yasir Nawaz, “Numerical modeling of mixed convective nanofluid flow with fractal stochastic heat and mass transfer using finite differences”, Front. Energy Res., 12 (2024)  crossref
    6. Carlos Parés-Pulido, “Finite volume methods for the computation of statistical solutions of the incompressible Euler equations”, IMA Journal of Numerical Analysis, 43:5 (2023), 3073  crossref
    7. M. Sango, “Stochastic Navier–Stokes variational inequalities with unilateral boundary conditions: probabilistic weak solvability”, Ukr. Mat. Zhurn., 75:4 (2023), 523  crossref
    8. Huaqiao Wang, “Large deviation principles of 2D stochastic Navier–Stokes equations with Lévy noises”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 153:1 (2023), 19  crossref
    9. M. Sango, “Stochastic Navier–Stokes Variational Inequalities with Unilateral Boundary Conditions: Probabilistic Weak Solvability”, Ukr Math J, 75:4 (2023), 600  crossref
    10. G. Deugoue, J. K. Djoko, A. C. Fouape, “GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS COUPLED WITH THE HEAT EQUATION: EXISTENCE RESULT AND TIME DISCRETE APPROXIMATION”, jaac, 11:5 (2021), 2423  crossref
    11. D. Breit, T. C. Moyo, “Dissipative Solutions to the Stochastic Euler Equations”, J. Math. Fluid Mech., 23:3 (2021)  crossref
    12. Ana Bela Cruzeiro, “Stochastic Approaches to Deterministic Fluid Dynamics: A Selective Review”, Water, 12:3 (2020), 864  crossref
    13. Buckmaster T. Vicol V., “Convex Integration and Phenomenologies in Turbulence”, EMS Surv. Math. Sci., 6:1-2 (2019), 173–263  crossref  isi
    14. Susan Friedlander, Nathan Glatt-Holtz, Vlad Vicol, “Inviscid limits for a stochastically forced shell model of turbulent flow”, Ann. Inst. H. Poincaré Probab. Statist., 52:3 (2016)  crossref
    15. Nathan Glatt-Holtz, Vladimír Šverák, Vlad Vicol, “On Inviscid Limits for the Stochastic Navier–Stokes Equations and Related Models”, Arch Rational Mech Anal, 217:2 (2015), 619  crossref
    16. Peter Constantin, Nathan Glatt-Holtz, Vlad Vicol, “Unique Ergodicity for Fractionally Dissipated, Stochastically Forced 2D Euler Equations”, Commun. Math. Phys., 330:2 (2014), 819  crossref
    17. D. A. Khrychev, “On large deviations for ensembles of distributions”, Sb. Math., 204:11 (2013), 1671–1690  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    18. Arnaud Debussche, Lecture Notes in Mathematics, 2073, Topics in Mathematical Fluid Mechanics, 2013, 23  crossref
    19. Igor Chueshov, Annie Millet, “Stochastic Two-Dimensional Hydrodynamical Systems: Wong-Zakai Approximation and Support Theorem”, Stochastic Analysis and Applications, 29:4 (2011), 570  crossref
    20. Gabriel Deugoue, Mamadou Sango, “Weak solutions to stochastic 3D Navier–Stokes-α model of turbulence: α-Asymptotic behavior”, Journal of Mathematical Analysis and Applications, 384:1 (2011), 49  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1119
    Russian version PDF:362
    English version PDF:50
    References:124
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025