1. Richard A. Davis, Keh-Shin Lii, Dimitris N. Politis, Selected Works of Murray Rosenblatt, 2011, 377  crossref
  2. Sango M., “Density Dependent Stochastic Navier–Stokes Equations With Non-Lipschitz Random Forcing”, Reviews in Mathematical Physics, 22:6 (2010), 669–697  crossref  isi  elib
  3. Sango M., “Magnetohydrodynamic turbulent flows: Existence results”, Physica D-Nonlinear Phenomena, 239:12 (2010), 912–923  crossref  isi
  4. Igor Chueshov, Annie Millet, “Stochastic 2D Hydrodynamical Type Systems: Well Posedness and Large Deviations”, Appl Math Opt, 2009  crossref  isi
  5. Albeverio, S, “Some methods of infinite dimensional analysis in hydrodynamics: An introduction”, Spde in Hydrodynamic: Recent Progress and Prospects, 1942 (2008), 1  crossref  mathscinet  isi  elib
  6. I CHUESHOV, S KUKSIN, “Stochastic 3D Navier–Stokes equations in a thin domain and its α -approximation”, Physica D: Nonlinear Phenomena, 237:10-12 (2008), 1352  crossref  elib
  7. Armen Shirikyan, “Qualitative properties of stationary measures for three-dimensional Navier–Stokes equations”, Journal of Functional Analysis, 249:2 (2007), 284  crossref
  8. Sergey Lototsky, Boris Rozovskii, From Stochastic Calculus to Mathematical Finance, 2006, 433  crossref
  9. R. Mikulevicius, B. L. Rozovskii, “Global L2-solutions of stochastic Navier–Stokes equations”, Ann. Probab., 33:1 (2005)  crossref
  10. A. R. Shirikyan, “Analyticity of solutions for randomly forced two-dimensional Navier–Stokes equations”, Russian Math. Surveys, 57:4 (2002), 785–799  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  11. Björn Schmalfuss, “Qualitative properties for the stochastic Navier–Stokes equation”, Nonlinear Analysis: Theory, Methods & Applications, 28:9 (1997), 1545  crossref
  12. V. I. Gishlarkaev, “Existence of statistical solutions of a stochastic Karman system in a bounded region”, Math. Notes, 58:1 (1995), 692–702  mathnet  crossref  mathscinet  zmath  isi
  13. A. Ponosov, Advances in Analysis, Probability and Mathematical Physics, 1995, 200  crossref
  14. L. Giraitis, S. A. Molchanov, D. Surgailis, The IMA Volumes in Mathematics and its Applications, 46, New Directions in Time Series Analysis, 1993, 153  crossref
  15. Atsushi Inoue, Lecture Notes in Mathematics, 1530, The Navier-Stokes Equations II — Theory and Numerical Methods, 1992, 246  crossref
  16. N. G. Dokuchaev, “Boundary Value Problems for Functionals of Ito^ Processes”, Theory Probab Appl, 36:3 (1991), 459  mathnet  crossref  mathscinet  zmath  isi
  17. N. Elezović, A. Mikelić, “On the stochastic Cahn-Hilliard equation”, Nonlinear Analysis: Theory, Methods & Applications, 16:12 (1991), 1169  crossref
  18. Dongho Chae, “The vanishing viscosity limit of statistical solutions of the Navier–Stokes equations. I. 2-D periodic case”, Journal of Mathematical Analysis and Applications, 155:2 (1991), 437  crossref
  19. Dongho Chae, “The vanishing viscosity limit of statistical solutions of the Navier–Stokes equations. II. The general case”, Journal of Mathematical Analysis and Applications, 155:2 (1991), 460  crossref
  20. W. Kollmann, “The pdf approach to turbulent flow”, Theoret Comput Fluid Dynamics, 1:5 (1990), 249  crossref  zmath  adsnasa
Previous
1
2
3
Next