Abstract:
Free-radical reactions of glycero- and sphingolipids occurring in their polar moiety (fragmentation) and in their hydrophobic residue (peroxidation) under the action of reactive oxygen species are considered. The main attention is focused on free-radical fragmentation; its mechanism and regularities are discussed. Lipid peroxidation has been shown to modify the residues of polyunsaturated fatty acids, while the free-radical fragmentation results in the cleavage of ester, O-glycosidic and amide bonds in lipid molecules to give glycerophosphatides, ceramides and fatty acid amides functioning as secondary messengers in biosystems. The bibliography includes 132 references.
Received: 22.12.2010
Bibliographic databases:
Document Type:
Article
Language: English
Original paper language: Russian
Citation:
I. L. Yurkova, “Free-radical reactions of glycerolipids and sphingolipids”, Usp. Khim., 81:2 (2012), 175–190; Russian Chem. Reviews, 81:2 (2012), 175–190
Linking options:
https://www.mathnet.ru/eng/rcr9
https://doi.org/10.1070/RC2012v081n02ABEH004205
https://www.mathnet.ru/eng/rcr/v81/i2/p175
This publication is cited in the following 21 articles:
V. P. Shevchenko, K. V. Shevchenko, I. Yu. Nagaev, L. A. Andreeva, N. F. Myasoedov, Pharm Chem J, 2025
G. A. Ksendzova, N. I. Ostrovskaya, R. L. Sverdlov, V. L. Sorokin, High Energy Chem, 57:6 (2023), 489
E. M Ovsyannikova, I. O Soloninkina, I. L Yurkova, Žurnal obŝej himii, 93:7 (2023), 1070
E. M. Ovsyannikova, I. O. Soloninkina, I. L. Yurkova, Russ J Gen Chem, 93:7 (2023), 1711
O. V. Urbanovich, A. I. Davydenko, E. A. Panteleeva, R. L. Sverdlov, O. I. Shadyro, High Energy Chem, 56:3 (2022), 170
O. A. Milach, V. E. Naidenov, E. G. Karankevich, I. L. Yurkova, Russ J Gen Chem, 92:2 (2022), 241
Brinkevich S.D., Maliborskii A.Ya., Melnichuk M.E., Sverdlov R.L., Grigor'ev V Yu., Shadyro I O., High Energy Chem., 55:2 (2021), 155–164
Barker-Tejeda T.C., Villasenor A., Gonzalez-Riano C., Lopez-Lopez A., Gradillas A., Barbas C., J. Chromatogr. A, 1651 (2021), 462254
Brinkevich S.D., Maliborskii A.Ya., Kapusto I.A., Sverdlov R.L., Grigor'ev Yu.V., Ivashkevich O.A., Shadyro O.I., High Energy Chem., 53:2 (2019), 147–154
Dan Meyerstein, Alkane Functionalization, 2019, 73
A. M. Poff, D. Kernagis, D. P. D'Agostino, Comprehensive Physiology, 7, no. 1, 2017, 213–234
I. M. Dovgan, N. O. Melnyk, I. F. Labunets, N. A. Utko, S. I. Savosko, World Med. Biol., 2017, no. 3, 100–107
E. N. Shendikova, I. V. Mel'sitova, I. L. Yurkova, High Energy Chem., 51:5 (2017), 363–368
E. L. Pannkuk, E. C. Laiakis, V. K. Singh, A. J. Fornace, Sci Rep, 7 (2017), 9777
V. I. Chursin, Izv. Vyss. Uchebnykh Zaved. Khim. Khimichesk. Tekhnol., 60:3 (2017), 83–89
Angela M. Poff, Dawn Kernagis, Dominic P. D'Agostino, Comprehensive Physiology, 7:1 (2017), 213
Shendikova E.N., Mel'sitova I.V., Yurkova I.L., High Energy Chem., 50:4 (2016), 249–253
Couto D., Melo T., Maciel E., Campos A., Alves E., Guedes S., Domingues M. Rosario M., Domingues P., J. Am. Soc. Mass Spectrom., 27:12 (2016), 1965–1978
I. V. Mel’sitova, I. L. Yurkova, High Energy Chem, 49:3 (2015), 133